Communications in Mathematical Physics

, Volume 323, Issue 1, pp 107–141 | Cite as

Noncommutative Geometry of the Moyal Plane: Translation Isometries, Connes’ Distance on Coherent States, Pythagoras Equality

Article

Abstract

We study the metric aspect of the Moyal plane from Connes’ noncommutative geometry point of view. First, we compute Connes’ spectral distance associated with the natural isometric action of \({\mathbb{R}^2}\) on the algebra of the Moyal plane \({\mathcal{A}}\). We show that the distance between any state of \({\mathcal{A}}\) and any of its translated states is precisely the amplitude of the translation. As a consequence, we obtain the spectral distance between coherent states of the quantum harmonic oscillator as the Euclidean distance on the plane. We investigate the classical limit, showing that the set of coherent states equipped with Connes’ spectral distance tends towards the Euclidean plane as the parameter of deformation goes to zero. The extension of these results to the action of the symplectic group is also discussed, with particular emphasis on the orbits of coherent states under rotations. Second, we compute the spectral distance in the double Moyal plane, intended as the product of (the minimal unitization of) \({\mathcal{A}}\) by \({\mathbb{C}^2}\). We show that on the set of states obtained by translation of an arbitrary state of \({\mathcal{A}}\), this distance is given by the Pythagoras theorem. On the way, we prove some Pythagoras inequalities for the product of arbitrary unital and non-degenerate spectral triples. Applied to the Doplicher- Fredenhagen-Roberts model of quantum spacetime [DFR], these two theorems show that Connes’ spectral distance and the DFR quantum length coincide on the set of states of optimal localization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amelino-Camelia G., Gubitosi G., Mercati F.: Discretness of area in noncommutative space. Phys. Lett. B 676, 180–83 (2009)Google Scholar
  2. 2.
    The Atlas Collaboration. Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012)Google Scholar
  3. 3.
    The CMS Collaboration. Observation of a new boson at mass of 125GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012)Google Scholar
  4. 4.
    Bahns D., Doplicher S., Fredenhagen K., Piacitelli G.: Quantum geometry on quantum spacetime: distance, area and volume operators. Commun. Math. Phys. 308, 567–589 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Bellissard, J.V., Marcolli, M., Reihani, K.: Dynamical systems on spectral metric spaces. http://arXiv.org/abs/1008.4617v1 [math.OA], 2010
  6. 6.
    Bimonte G., Lizzi F., Sparano G.: Distances on a lattice from noncommutative geometry. Phys. Lett. B 341, 139–146 (1994)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Bondia J.M.G., Varilly J.C.: Algebras of distributions suitable for phase-space quantum mechanics I. J. Math. Phys. 29(4), 869–879 (1988)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Bondia J.M.G., Varilly J.C.: Algebras of distributions suitable for phase-space quantum mechanics. II. J. Math. Phys. 29(4), 880–887 (1988)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Cagnache E., d’Andrea F., Martinetti P., Wallet J.-C.: The spectral distance on Moyal plane. J. Geom. Phys. 61, 1881–1897 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Cagnache E., Wallet J.-C.: Spectral distances: Results for Moyal plane and noncommutative torus. SIGMA 6(026), 17 (2010)MathSciNetGoogle Scholar
  11. 11.
    Chamseddine A.H., Connes A., Marcolli M.: Gravity and the standard model with neutrino mixing. Adv. Theor. Math. Phys. 11, 991–1089 (2007)MathSciNetMATHGoogle Scholar
  12. 12.
    Christensen E., Ivan C.: Spectral triples for af C*-algebras and metrics on the cantor set. J. Op. Th. 56(1), 17–46 (2006)MathSciNetMATHGoogle Scholar
  13. 13.
    Christensen, E., Ivan, C., Schrohe, E.: Spectral triples and the geometry of fractals. J. Noncomm. Geom. 6(2), 249–274 (2012)Google Scholar
  14. 14.
    Cohen-Tannoudji, C., Diu, B., Laloë, F.: Mécanique quantique I. Paris: Hermann, 1973Google Scholar
  15. 15.
    Connes A.: Compact metric spaces, Fredholm modules, and hyperfiniteness. Ergod. Th. & Dynam. Sys. 9, 207–220 (1989)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Connes, A.: Noncommutative Geometry. London-New York: Academic Press, 1994Google Scholar
  17. 17.
    Connes A.: Gravity coupled with matter and the foundations of noncommutative geometry. Commun. Math. Phys. 182, 155–176 (1996)MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Connes A., Dubois-Violette M.: Noncommutative finite-dimensional manifolds I. spherical manifolds and related examples. Commun. Math. Phys. 230, 539–579 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    Dai J., Song X.: Pythagoras’ theorem on a 2d-lattice from a “natural” Dirac operator and Connes’ distance formula. J. Phys. A. 34, 5571–5582 (2001)MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    D’Andrea F., Martinetti P.: A view on optimal transport from noncommutative geometry. SIGMA 6(057), 24 (2010)MathSciNetGoogle Scholar
  21. 21.
    D’Andrea, F., Martinetti, P.: On Pythagoras theorem for products of spectral triples. Lett. Math. Phys. 103(5), 469–492 (2013)Google Scholar
  22. 22.
    Dimakis A., Mueller-Hoissen F.: Connes’ distance function on one dimensional lattices. Int. J. Theor. Phys. 37, 907 (1998)MATHCrossRefGoogle Scholar
  23. 23.
    Doplicher, S.: Spacetime and fields, a quantum texture. In: Proceedings 37th Karpacz Winter School of Theo. Physics, Moville, NY: Amer. Inst. Phys., 2001, pp. 204–213Google Scholar
  24. 24.
    Doplicher S.: Quantum field theory on quantum spacetime. J. Phys. Conf. Ser. 53, 793–798 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Doplicher S., Fredenhagen K., Robert J.E.: The quantum structure of spacetime at the Planck scale and quantum fields. Commun. Math. Phys. 172, 187–220 (1995)ADSMATHCrossRefGoogle Scholar
  26. 26.
    Figueroa, H., Bondia, J.M.G., Varilly, J.C.: Elements of Noncommutative Geometry. Basel-Boston: Birkhauser, 2001Google Scholar
  27. 27.
    Gayral V., Bondia J.M.G., Iochum B., Schücker T., Varilly J.C.: Moyal planes are spectral triples. Commun. Math. Phys. 246, 569–623 (2004)ADSMATHCrossRefGoogle Scholar
  28. 28.
    Gadella M., Gracia-Bondia J.M., Nieto L.M., Varilly J.C.: Quadratic Hamiltonians in phase-space quantum mechanics. J. Phys. A 22, 2709–2738 (1989)MathSciNetADSMATHCrossRefGoogle Scholar
  29. 29.
    Groenewold H.: On the principles of elementary quantum mechanics. Physica 12, 405–460 (1946)MathSciNetADSMATHCrossRefGoogle Scholar
  30. 30.
    Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. Basel-Boston: Birkhäuser, 1999Google Scholar
  31. 31.
    Iochum B., Krajewski T., Martinetti P.: Distances in finite spaces from noncommutative geometry. J. Geom. Phy. 31, 100–125 (2001)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras. Volume I, Advanced theory. London-New York: Academic Press, 1986Google Scholar
  33. 33.
    Kadison R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras. Volume II, Advanced theory. London-NewYork: Academic Press, 1986Google Scholar
  34. 34.
    Lizzi, F., Varilly, J., Zamponi, A.: Private communicationGoogle Scholar
  35. 35.
    Lizzi, F., Szabo, R.J., Zampini, A.: Geometry of the gauge algebra in noncommutative Yang-Mills theory. JHEP 0108(032), (2001)Google Scholar
  36. 36.
    Madore, J.: An introduction to noncommutative differential geometry and its physical applications. Cambridge: Cambridge University Press, 1995Google Scholar
  37. 37.
    Martinetti, P.: Distances en géométrie non-commutative. PhD thesis. http://arXiv.org.abs/math-ph/0112038v1, 2001
  38. 38.
    Martinetti P.: Carnot-Carathéodory metric and gauge fluctuation in noncommutative geometry. Commun. Math. Phys. 265, 585–616 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  39. 39.
    Martinetti P.: Carnot-Carathéodory metric vs gauge fluctuation in noncommutative geometry. African J. Math. Phys. 3, 157–162 (2006)Google Scholar
  40. 40.
    Martinetti P.: Spectral distance on the circle. J. Func. Anal. 255, 1575–1612 (2008)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Martinetti, P.: Smoother than a circle or how noncommutative geometry provides the torus with an egocentric metric. In: Proceedings of Deva Intl. Conf. on Differential Geometry and Physics (Oct. 2005), Romania: Cluj Univ. Press, 2006Google Scholar
  42. 42.
    Martinetti, P., Tomassini, L.: Length and distance on a quantum space. In: Proc. of Sciences, 042, 2011, available at http://www.pos.sissa.it/archieve/conferences/155/042/CORFU2011-042.pdf
  43. 43.
    Martinetti P., Mercati F., Tomassini L.: Minimal length in quantum space and integrations of the line element in noncommutative geometry. Rev. Math. Phys. 24(5), 36 (2012)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Martinetti P., Wulkenhaar R.: Discrete Kaluza-Klein from scalar fluctuations in noncommutative geometry. J. Math. Phys. 43(1), 182–204 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  45. 45.
    Moyal J.E.: Quantum mechanics as a statistical theory. Proc. Camb. Phil. Soc. 45, 99–124 (1949)MathSciNetADSMATHCrossRefGoogle Scholar
  46. 46.
    Piacitelli G.: Quantum spacetime: a disambiguation. SIGMA 6(073), 43 (2010)MathSciNetGoogle Scholar
  47. 47.
    Reed, M., Simon, B.: Methods of modern mathematical physics. Vol 2. Fourier analysis, self-adjointness. New York: Academic Press, 1975Google Scholar
  48. 48.
    Rieffel M.A.: Metric on state spaces. Documenta Math. 4, 559–600 (1999)MathSciNetMATHGoogle Scholar
  49. 49.
    Sakai, S.: C*-algebras and W*-algebras. Berlin: Springer-Verlag, 1971Google Scholar
  50. 50.
    Sitarz A.: Rieffel deformation quantization and isospectral deformation. Int. J. Theor. Phys. 40, 1693–1696 (2001)MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Rudin, W.: Real and complex analysis. New York: McGraw-Hill, 1970Google Scholar
  52. 52.
    Villani, C.: Topics in Optimal Transportation. Graduate studies in math., Volume~58, Providence, RI: Amer. Math. Soc., 2003Google Scholar
  53. 53.
    Wallet J.-C.: Connes distance by examples: Homothetic spectral metric spaces. Rev. Math. Phys. 24(9), 1250027 (2012)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Woronowicz S.L.: Unbounded elements affiliated with C-algebras and non-compact quantum groups. Commun. Math. Phys. 136, 399–432 (1991)MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.CMTP & Dipartimento di MatematicaUniversità di RomaTor VergataItaly
  2. 2.Dipartimento di FisicaUniversità di Roma “Sapienza”RomeItaly
  3. 3.Dipartimento di FisicaUniversità di Napoli Federico IIRomeItaly

Personalised recommendations