Skip to main content
Log in

Global and Uniqueness Properties of Stationary and Static Spacetimes with Outer Trapped Surfaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Global properties of maximal future Cauchy developments of stationary, m-dimensional asymptotically flat initial data with an outer trapped boundary are analyzed. We prove that, whenever the matter model is well posed and satisfies the null energy condition, the future Cauchy development of the data is a black hole spacetime. More specifically, we show that the future Killing development of the exterior of a sufficiently large sphere in the initial data set can be isometrically embedded in the maximal Cauchy development of the data. In the static setting we prove, by working directly on the initial data set, that all Killing prehorizons are embedded whenever the initial data set has an outer trapped boundary and satisfies the null energy condition. By combining both results we prove a uniqueness theorem for static initial data sets with outer trapped boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Beig R., Chruściel P.T.: Killing vectors in asymptotically flat space-times: I. Asymptotically translational killing vectors and the rigid positive energy theorem. J. Math. Phys. 37, 1939–1961 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bunting G., Masoodul Alam A.K.M.: Nonexistence of multiple black holes in asymptotically euclidean static vacuum space-time. Gen. Rel. Grav. 19, 147–154 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Camacho, C., Neto, A.L.: Geometric theory of foliations. Boston, MA: Birkhauser, Boston Inc., 1985

  4. Carrasco, A.: Trapped surfaces in spacetimes with symmetries and applications to uniqueness theorems. Ph.D. Thesis, 2011

  5. Carrasco A., Mars M.: On marginally outer trapped surfaces in stationary and static spacetimes. Class Quantum Grav. 25, 055011 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  6. Carrasco A., Mars M.: Uniqueness theorem for static spacetimes containing marginally outer trapped surfaces. Class Quantum Grav. 28, 175018 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  7. Chavel, I.: Riemannian geometry, a modern introduction. Cambridge Studies in Advanced Mathematics 98, Cambridge: Cambridge University Press, 2006

  8. Chrućiel P.T., Galloway G.J.: Uniqueness of static black-holes without analyticity. Class Quantum Grav. 27, 152001 (2010)

    Article  ADS  Google Scholar 

  9. Chruściel, P.T.: The classification of static vacuum space-times containing an asymptotically flat spacelike hypersurface with compact interior. Class Quantum Grav. 16, 661-687 (1999), http://arxiv.org/abs/gr-qc/9809088v2, 2010, Correction to published article

  10. Chruściel P.T.: ‘No hair’ theorems - foklore, conjectures, results. Contemporary Math. 170, 23–49 (1994)

    Article  ADS  Google Scholar 

  11. Chruściel P.T.: The classification of static vacuum space-times containing an asymptotically flat spacelike hypersurface with compact interior. Class Quantum Grav. 16, 661–687 (1999)

    Article  ADS  MATH  Google Scholar 

  12. Chruściel P.T., Lopes Costa J.: On uniqueness of stationary black holes. Astérisque 321, 195–265 (2008)

    Google Scholar 

  13. Chruściel P.T., Maerten D.: Killing vectors in Asymptotically flat space–times: Ii. Asymptotically translational killing vectors and the rigid positive energy theorem in higher dimensions. J. Math. Phys. 47, 022502 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  14. Chruściel P.T., Tod K.P.: The classification of static electro-vacuum spacetimes containing an asymptotically flat spacelike hypersurface with a compact interior. Commun. Math. Phys. 271, 577–589 (2007)

    Article  ADS  MATH  Google Scholar 

  15. Damour T., Schmidt B.: Reliability of perturbation theory in general relativity. J. Math. Phys. 31, 2441–2453 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. Studies in Advanced Mathematics. Boca Raton, FL: CRC Press, 1992

  17. Galloway G.J.: On the topology of black holes. Commun. Math. Phys. 151, 53–66 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Galloway G.J.: Maximum principles for null hypersurfaces and null splitting theorems. Ann. Poincaré Phys. Theor. 1, 543–567 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gromoll D., Meyer W.: On differentiable functions with isolated critical points. Topology 8, 361–369 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shiromizu T., Gibbons G.W., Ida D.: Uniqueness and non-uniqueness of static vacuum black holes in higher dimensions. Prog.Theor.Phys.Suppl. 148, 284–290 (2003)

    MathSciNet  Google Scholar 

  21. Hawking, S.W., Ellis, G.F.R.:The large scale structure of space-time. Cambridge monographs on mathematical physics, Cambridge: Cambridge University Press, 1973

  22. Mantegazza C., Mennucci A.C.: Hamilton-jacobi equations and distance functions on riemannian manifolds. Appl. Math. Optim. 47, 1–25 (2003)

    Article  MathSciNet  Google Scholar 

  23. Miao P.: A remark on boundary effects in static vacuum initial data sets. Class Quantum Grav. 22, L53–L59 (2005)

    Article  ADS  MATH  Google Scholar 

  24. Michor, P.W.: Topics in Differential Geometry. Graduate Texts in Mathematics 93. Providence, VI: American Mathematical Society, 2000

  25. Moncrief V.: Spacetime symmetries and linearization stability of the einstein equations. J. Math. Phys. 16, 493–498 (1975)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Penrose R.: Gravitational collapse – the role of general relativity. Nuovo Cimiento 1, 252–276 (1965)

    ADS  Google Scholar 

  27. Chruściel P.T., Bartnitk R.: Boundary value problems for dirac-type equations, with applications. J. Reine Ange. Math. (Crelle’s Journal) 579, 13–73 (2005)

    MATH  Google Scholar 

  28. Rácz I.: On the existence of Killing vector fields. Class. Quantum Grav. 16, 1695–1703 (1999)

    Article  ADS  MATH  Google Scholar 

  29. Rácz I.: Symmetries of spacetime and their relation to initial value problems. Class. Quantum Grav. 18, 5103–5113 (2001)

    Article  ADS  MATH  Google Scholar 

  30. Rácz I., Wald R.M.: Extensions of spacetimes with killing horizons. Class. Quantum Grav. 9, 2643–2656 (1992)

    Article  ADS  MATH  Google Scholar 

  31. Nomizu, K., Kobayashi, S.: Foundations of differential geometry, Vol II. New York: Interscience Publisher, 1969

  32. Wald, R.M.: General Relativity. Chicago, IL: The University of Chicago Press, 1984

  33. Weyl H.: Zur gravitationstheorie. Ann. Phys. (Berlin) 54, 117–145 (1917)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Mars.

Additional information

Communicated by P. T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mars, M., Reiris, M. Global and Uniqueness Properties of Stationary and Static Spacetimes with Outer Trapped Surfaces. Commun. Math. Phys. 322, 633–666 (2013). https://doi.org/10.1007/s00220-013-1739-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1739-5

Keywords

Navigation