Skip to main content
Log in

Matrix Product States, Random Matrix Theory and the Principle of Maximum Entropy

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Using random matrix techniques and the theory of Matrix Product States we show that reduced density matrices of quantum spin chains have generically maximum entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 05 (1957)

    Google Scholar 

  2. Jaynes, E.T.: Information theory and statistical mechanics. ii. Phys. Rev. 108(2), 10 (1957)

    Google Scholar 

  3. Landau, L.D., Lifshitz, E.M.: Course of theoretical physics. Vol. 5: Statistical physics. Translated from the Russian by J. B. Sykes and M. J. Kearsley. Second revised and enlarged edition. Oxford: Pergamon Press, 1968.

  4. Jaynes, E.T.: Where do we stand on maximum entropy? In: Maximum entropy formalism (Conf., Mass. Inst. Tech., Cambridge, Mass., 1978), Cambridge, MA: MIT Press, 1979, pp. 15–118

  5. Popescu S., Short A.J., Winter A.: Entanglement and the foundations of statistical mechanics. Nat. Phys. 2(11), 754–758 (2006)

    Article  Google Scholar 

  6. Vinayak, Žnidarič M.: Subsystem dynamics under random hamiltonian evolution. J. Phy. A: Math. Theor. 45(12), 125204 (2012)

    Google Scholar 

  7. Masanes L., Roncaglia A.J., Acin A.: The complexity of energy eigenstates as a mechanism for equilibration. Phys. Rev. E. 8, 032137 (2013)

    Article  ADS  Google Scholar 

  8. Brandão F.G.S.L., Ćwikliński P., Horodecki M., Horodecki P., Korbicz J. K., Mozrzymas M.: Convergence to equilibrium under a random hamiltonian. Phys. Rev. E 86, 031101 (2012)

    Article  ADS  Google Scholar 

  9. Cramer M.: Thermalization under randomized local hamiltonians. New J. Phys. 14(5), 053051 (2012)

    Article  ADS  Google Scholar 

  10. Linden N., Popescu S., Short A. J., Winter A.: Quantum mechanical evolution towards thermal equilibrium. Phys. Rev. E 79, 061103 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  11. Linden N., Popescu S., Short A. J., Winter A.: On the speed of fluctuations around thermodynamic equilibrium. New J. Phys. 12(5), 055021 (2010)

    Article  ADS  Google Scholar 

  12. Cramer M., Flesch A., McCulloch I.P., Schollwöck U., Eisert J.: Exploring local quantum many-body relaxation by atoms in optical superlattices. Phys. Rev. Lett 101, 063001 (2008)

    Article  ADS  Google Scholar 

  13. Flesch A., Cramer M., McCulloch I.P., Schollwöck U., Eisert J.: Probing local relaxation of cold atoms in optical superlattices. Phys. Rev. A 78, 033608 (2008)

    Article  ADS  Google Scholar 

  14. Trotzky S., Chen Y.-A., Flesch A., McCulloch I.P., Schollwock U., Eisert J., Bloch I.: Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional bose gas. Nat Phys 8(4), 325–330 (2012)

    Article  Google Scholar 

  15. Jaynes E.T.: Prior probabilities. Systems Science and Cybernetics, IEEE Transactions on 4(3), 227–241 (1968)

    Article  MATH  Google Scholar 

  16. White Steven R.: Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992)

    Article  ADS  Google Scholar 

  17. Hastings M.B.: An area law for one-dimensional quantum systems. J. Stat. Mech. Theory Exp. 2007(08), P08024 (2007)

    Article  MathSciNet  Google Scholar 

  18. Perez-Garcia D., Verstraete F, Wolf M.M., Cirac J.I.: Matrix product state representations. Quantum Inf Comp. 7(5 & 6), 1–28 (2006)

    MathSciNet  Google Scholar 

  19. Collins B., Nechita I.: Random quantum channels i: Graphical calculus and the bell state phenomenon. Commu. Math. Phys. 297(2), 345–370 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Garnerone, S., de Oliveira, T.R., Zanardi, P.: Typicality in random matrix product states. Phys. Rev. A 81(3), 03 (2010)

    Google Scholar 

  21. Garnerone, S., de Oliveira, T.R., Haas, S., Zanardi, P.: Statistical properties of random matrix product states. Phys. Rev. A 82(5), 11 (2010)

    Google Scholar 

  22. Goldstein S., Lebowitz J., Tumulka R., Zangh‘ıN.: On the distribution of the wave function for systems in thermal equilibrium. J. Stat. Phys. 125, 1193–1221 (2006)

    Google Scholar 

  23. Reimann P.: Typicality for generalized microcanonical ensembles. Phys. Rev. Lett. 99, 160404 (2007)

    Article  ADS  Google Scholar 

  24. Goldstein S., Lebowitz J.L., Tumulka R., Zangh‘ıN.: Long-time behavior of macroscopic quantum systems. The Eur. Phys. J. H 35, 173–200 (2010)

  25. Bañuls M.C., Cirac J.I., Hastings M.B.: Strong and weak thermalization of infinite nonintegrable quantum systems. Phys. Rev. Lett. 106, 050405 (2011)

    Article  ADS  Google Scholar 

  26. Weingarten D.: Asymptotic behavior of group integrals in the limit of infinite rank. J. Math. Phys. 19, 99–1001 (1978)

    Article  Google Scholar 

  27. Collins B.: Moments and cumulants of polynomial random variables on unitarygroups, the Itzykson-Zuber integral, and free probability. Int. Math. Res. Not. 2003(17), 953–982 (2003)

    Article  MATH  Google Scholar 

  28. Fulton, W.: Young tableaux, Volume 35 of London Mathematical Society Student Texts. Cambridge: Cambridge University Press, 1997

  29. Milman, V.D., Schechtman, G.: Asymptotic theory of finite dimensional normed spaces. Lecture Notes in Mathematics. Berlin-Heidelberg-New York: Springer, 1986

  30. Ledoux, M.: The concentration of measure phenomenon, Volume 89 of Mathematical Surveys and Monographs. Amet. Math. Soc., RI: Providence, 2001

  31. Collins B., ’Sniady P.: Integration with respect to the Haar measure on unitary, orthogonal and symplectic group. Commun. Math. Phys. 264, 773–795 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Montanaro, A.: Weak multiplicativity for random quantum channels. Commun. Math. Phys. 319(2), 535–555 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Pérez-García.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, B., González-Guillén, C.E. & Pérez-García, D. Matrix Product States, Random Matrix Theory and the Principle of Maximum Entropy. Commun. Math. Phys. 320, 663–677 (2013). https://doi.org/10.1007/s00220-013-1718-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1718-x

Keywords

Navigation