Communications in Mathematical Physics

, Volume 322, Issue 2, pp 385–414 | Cite as

The Spectral Flow for Dirac Operators on Compact Planar Domains with Local Boundary Conditions

  • Marina ProkhorovaEmail author


Let Dt, \({0\;\leqslant\;t\;\leqslant\;1}\) be a 1-parameter family of Dirac type operators on a two-dimensional disk with m − 1 holes. Suppose that all operators Dt have the same symbol, and that D1 is conjugate to D0 by a scalar gauge transformation. Suppose that all operators Dt are considered with the same elliptic local boundary condition. Our main result is a computation of the spectral flow for such a family of operators. The answer is obtained up to multiplication by an integer constant depending only on the number of holes in the disk. This constant is calculated explicitly for the case of the annulus (m = 2).


Gauge Transformation Dirac Operator Boundary Component Fredholm Operator Time Reversal Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akhmerov A.R., Beenakker C.W.J.: Boundary conditions for Dirac fermions on a terminated honeycomb lattice. Phys. Rev. B 77(8), 085423 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Atiyah M.F., Patodi V.K., Singer I.M.: Spectral asymmetry and Riemannian geometry. III. Math. Proc. Cambridge Phil. Soc. 79(1), 71–99 (1976)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Berry M.V., Mondragon R.J.: Neutrino billiards: time-reversal symmetry-breaking without magnetic fields. Proc. Roy. Soc. A 412(1842), 53–74 (1987)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Booss-Bavnbek B., Furutani K.: The Maslov index: a functional analytical definition and the spectral flow formula. Tokyo J. Math. 21(1), 1–34 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Booss-Bavnbek B., Lesch M., Phillips J.: Spectral flow of paths of self-adjoint Fredholm operators. Nucl. Phys. B Proc. Supp. 104, 177–180 (2002)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Booss-Bavnbek B., Lesch M., Phillips J.: Unbounded Fredholm operators and spectral flow. Canadian J. Math. 57(2), 225–250 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Booss-Bavnbek B., Lesch M., Zhu C.: The Calderon projection: new definition and applications. J. Geom. Phys. 59(7), 784–826 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Booss-Bavnbek, B., Wojciechowski, K.P.: Elliptic boundary problems for Dirac operators. Basel-Boston: Birkhauser, 1993Google Scholar
  9. 9.
    Brüning J., Lesch M.: On boundary value problems for Dirac type operators: I. Regularity and self-adjointness. J. Funct. Anal. 185(1), 1–62 (2001)zbMATHCrossRefGoogle Scholar
  10. 10.
    Fulton, W., Harris, J.: Representation theory. A first course. Graduate Texts in Mathematics, Readings in Mathematics, 129. Berlin-Hedilberg-New York: Springer-Verlag, 1991Google Scholar
  11. 11.
    Katsnelson, M.I., Nazaikinskii, V.E.: The Aharonov-Bohm effect for massless Dirac fermions and the spectral flow of Dirac type operators with classical boundary conditions. Preprint: arXiv:1204.2276v1 [math.AP], 2012; Teoret. Mat. Fiz. 172(3), 437–453 (2012); Eng. trans. in. Theoret. Math. Phys. 172(3), 1263–1277 (2012)Google Scholar
  12. 12.
    Lesch, M.: The uniqueness of the spectral flow on spaces of unbounded self-adjoint Fredholm operators. In: Booss-Bavnbek, B., Grubb, G., Wojciechowski, K.P. (eds.) Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds, AMS Contemporary Math Proceedings 366, 193–224, (2005), pp. 193–224Google Scholar
  13. 13.
    Nicolaescu L.: The Maslov index, the spectral flow, and decomposition of manifolds. Duke Math. J. 80(2), 485–533 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Phillips J.: Self-adjoint Fredholm operators and spectral flow. Canadian Math. Bull 39(4), 460–467 (1996)zbMATHCrossRefGoogle Scholar
  15. 15.
    Prokhorova, M.: The spectral flow for Dirac operators on compact planar domains with local boundary conditions. arXiv:1108.0806v1 [math-ph], 2011Google Scholar
  16. 16.
    Prokhorova, M.: The spectral flow for first order elliptic operators on a compact surface. In preparationGoogle Scholar
  17. 17.
    Strichartz R.S.: Multipliers on fractional Sobolev spaces. J. Math. and Mech. 16(9), 1031–1060 (1967)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Yoshida T.: Floer homology and splittings of manifolds. Ann. Math. 134, 277–323 (1991)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Ural Federal UniversityEkaterinburgRussia

Personalised recommendations