Abramov L.M.: On the entropy of a flow. Dokl. Akad. Nauk SSSR 128, 873–875 (1959)
MathSciNet
MATH
Google Scholar
Ambrose W., Kakutani S.: Structure and continuity of measurable flows. Duke Math. J. 9, 25–42 (1942)
MathSciNet
MATH
Article
Google Scholar
Artin, E.: Ein Mechanisches System mit quasi-ergodischen Bahnen’. Collected papers, Reading, MA: Addison Wesley, 1965, pp. 499–501
Babillot M., Peigné M.: Asymptotic laws for geodesic homology on hyperbolic manifolds with cusps. Bull. Soc. Math. France 134(1), 119–163 (2006)
MathSciNet
MATH
Google Scholar
Barreira L., Iommi G.: Suspension flows over countable Markov shifts. J. Stat. Phys. 124(1), 207–230 (2006)
MathSciNet
ADS
MATH
Article
Google Scholar
Barreira L., Radu L., Wolf C.: Dimension of measures for suspension flows. Dyn. Syst. 19, 89–107 (2004)
MathSciNet
MATH
Article
Google Scholar
Bowen R.: Symbolic dynamics for hyperbolic flows. Amer. J. Math. 95, 429–460 (1973)
MathSciNet
MATH
Article
Google Scholar
Bowen R., Ruelle D.: The ergodic theory of Axiom A flows. Invent. Math. 29, 181–202 (1975)
MathSciNet
ADS
MATH
Article
Google Scholar
Bruin H., Todd M.: Equilibrium states for interval maps: potentials with supφ − inf φ < h
top(f). Commun. Math. Phys. 283(3), 579–611 (2008)
MathSciNet
ADS
MATH
Article
Google Scholar
Bufetov A.I, Gurevich B.M.: Existence and uniqueness of the measure of maximal entropy for the Teichmuller flow on the moduli space of Abelian differentials. Sbornik Math. 202, 935–970 (2011)
MathSciNet
ADS
MATH
Article
Google Scholar
Buzzi J., Sarig O.: Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps. Erg. Th. Dyn. Sys. 23, 1383–1400 (2003)
MathSciNet
MATH
Article
Google Scholar
Coelho Z., Quas A.: Criteria for d-continuity. Trans. Amer. Math. Soc. 350(8), 3257–3268 (1998)
MathSciNet
MATH
Article
Google Scholar
Daon, Y.: Bernoullicity of equilibrium measures on countable Markov shifts. http://arxiv.org/abs/1206.4160v1 [math.DS], 2012
Denker M., Urbański M.: Ergodic theory of equilibrium states for rational maps. Nonlinearity 4(1), 103–134 (1991)
MathSciNet
ADS
MATH
Article
Google Scholar
Díaz L.J., Gelfert K., Rams M.: Rich phase transitions in step skew products. Nonlinearity 24, 3391–3412 (2011)
MathSciNet
ADS
MATH
Article
Google Scholar
Fan, A., Jordan, T., Liao, L., Rams, M.: Multifractal analysis for expanding interval maps with infinitely many branches. http://arxiv.org/abs/1110.2856v1 [math.DS], 2011
Gurevič B.M.: Topological entropy for denumerable Markov chains. Dokl. Akad. Nauk SSSR 10, 911–915 (1969)
Google Scholar
Gurevič B.M.: Shift entropy and Markov measures in the path space of a denumerable graph. Dokl. Akad. Nauk SSSR 11, 744–747 (1970)
Google Scholar
Gurevič B.M.: A variational characterization of one-dimensional countable state Gibbs random fields. Z. Wahr. Verw. Geb. 68(2), 205–242 (1984)
Article
Google Scholar
Gurevič B.M., Katok S.: Arithmetic coding and entropy for the positive geodesic flow on the modular surface. Mosc. Math. J. 1, 569–582 (2001)
MathSciNet
Google Scholar
Hamenstädt, U.: Symbolic dynamics for the Teichmueller flow. Preprint available at http://www.math.uni-bonn.de/people/ursula/papers.html and http://arxiv.org/abs/1112.6107v1 [math.DS], 2011
Hanus P., Mauldin R., Urbański M.: Thermodynamic formalism and multifractal analysis of conformal infinite iterated function systems. Acta Math. Hungar. 96(1-2), 27–98 (2002)
MathSciNet
MATH
Article
Google Scholar
Hofbauer, F.: Examples for the nonuniqueness of the equilibrium state. Trans. Amer. Math. Soc. 228, 223–241 (1977)
Google Scholar
Hofbauer F., Keller G.: Equilibrium states for piecewise monotonic transformations. Erg. Th. Dyn. Sys. 2(1), 23–43 (1982)
MathSciNet
MATH
Article
Google Scholar
Inoquio-Renteria I., Rivera-Letelier J.: A Characterization of hyperbolic potentials of rational maps. Bull. Braz. Math. Soc. (N.S.) 43(1), 99–127 (2012)
MathSciNet
MATH
Article
Google Scholar
Iommi G.: Multifractal analysis for countable Markov shifts. Erg. Th. Dyn. Sys. 25(6), 1881–1907 (2005)
MathSciNet
MATH
Article
Google Scholar
Iommi, G.: Thermodynamic formalism for the positive geodesic flow on the modular surface. http://arxiv.org/abs/1009.4623v2 [math.DS], 2012
Iommi, G., Todd, M.: Transience in Dynamical Systems. To appear in Ergodic Theory Dynam. Systems, Doi: http://dx.doi.org.ezp-prod1.hui-harvard.edu/10.1017/S0143385712000351
Jaerisch, J., Kesseböhmer, M., Lamei, S.: Induced topological pressure for countable state Markov shifts. http://arxiv.org/abs/1010.2162v1 [math.DS], 2010
Katok, S.: Fuchsian groups. Chicago Lectures in Mathematics. Chicago, IL: University of Chicago Press, 1992
Katok S.: Coding of closed geodesics after Gauss and Morse. Geom. Dedicata 63(2), 123–145 (1996)
MathSciNet
MATH
Article
Google Scholar
Katok S., Ugarcovici I.: Symbolic dynamics for the modular surface and beyond. Bull. Amer. Math. Soc. (N.S.) 44(1), 87–132 (2007)
MathSciNet
MATH
Article
Google Scholar
Kempton T.: Thermodynamic formalism for suspension flows over countable Markov shifts. Nonlinearity 24, 2763–2775 (2011)
MathSciNet
ADS
MATH
Article
Google Scholar
Mauldin R., Urbański M.: Dimensions and measures in infinite iterated function systems. Proc. London Math. Soc. (3) 73, 105–154 (1996)
MathSciNet
MATH
Article
Google Scholar
Mauldin R., Urbański M.: Gibbs states on the symbolic space over an infinite alphabet. Israel J. Math. 125, 93–130 (2001)
MathSciNet
MATH
Article
Google Scholar
Mauldin, R., Urbański, M.: Graph directed Markov systems: geometry and dynamics of limit sets. Cambridge tracts in mathematics 148, Cambridge: Cambridge University Press, 2003
Melbourne I., Török A.: Statistical limit theorems for suspension flows. Israel J. Math. 144, 191–209 (2004)
MathSciNet
MATH
Article
Google Scholar
Oliveira K.: Equilibrium states for non-uniformly expanding maps. Erg. Th. Dyn. Sys. 23(6), 1891–1905 (2003)
MATH
Article
Google Scholar
Parry, W., Pollicott, M.: Zeta Functions and the Periodic Orbit Structure of Hyperbolics Dynamics. Astérisque 187–188, 1990
Przytycki, F., Urbański, M.: Conformal Fractals: Ergodic Theory Methods, Cambridge: Cambridge University Press, 2010
Ratner M.: Markov partitions for Anosov flows on n-dimensional manifolds. Israel J. Math. 15, 92–114 (1973)
MathSciNet
MATH
Article
Google Scholar
Sarig O.: Thermodynamic formalism for countable Markov shifts. Erg. Th. Dyn. Sys. 19, 1565–1593 (1999)
MathSciNet
MATH
Article
Google Scholar
Sarig O.: Phase transitions for countable Markov shifts. Commun. Math. Phys. 217(3), 555–577 (2001)
MathSciNet
ADS
MATH
Article
Google Scholar
Sarig O.: Existence of Gibbs measures for countable Markov shifts. Proc. Amer. Math. Soc. 131, 1751–1758 (2003)
MathSciNet
MATH
Article
Google Scholar
Savchenko S.: Special flows constructed from countable topological Markov chains. Funct. Anal. Appl. 32, 32–41 (1998)
MathSciNet
MATH
Article
Google Scholar
Series C.: The modular surface and continued fractions. J. London Math. Soc. (2) 31(1), 6980 (1985)
MathSciNet
Article
Google Scholar
Stratmann B.O., Urbanski M.: Real analyticity of topological pressure for parabolically semihyperbolic generalized polynomial-like maps. Indag. Math. (N.S.) 14(1), 119–134 (2003)
MathSciNet
MATH
Article
Google Scholar
Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics 79, Berlin-Heidelberg-NewYork: Springer, 1981