Communications in Mathematical Physics

, Volume 318, Issue 3, pp 675–716 | Cite as

A Supergeometric Approach to Poisson Reduction

  • A. S. Cattaneo
  • M. ZambonEmail author


This work introduces a unified approach to the reduction of Poisson manifolds using their description by graded symplectic manifolds. This yields a generalization of the classical Poisson reduction by distributions and allows one to construct actions of strict Lie 2-groups and to describe the corresponding reductions.


Vector Bundle Poisson Bracket Symplectic Manifold Poisson Structure Constant Rank 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexandrov M., Schwarz A., Zaboronsky O., Kontsevich M.: The geometry of the master equation and topological quantum field theory. Internat. J. Mod. Phys. A 12(7), 1405–1429 (1997)MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Baez, J.C., Dolan, J.: Categorification. In: Higher category theory (Evanston, IL, 1997), Volume 230 of Contemp. Math. Providence, RI: Amer. Math. Soc., 1998, pp. 1–36Google Scholar
  3. 3.
    Baez, J. C., Lauda, A.D.: Higher-dimensional algebra. V. 2-groups. Theory Appl. Categ. 12, 423–491 (electronic) (2004)Google Scholar
  4. 4.
    Brown R., Mackenzie K.C.H.: Determination of a double Lie groupoid by its core diagram. J. Pure Appl. Algebra 80(3), 237–272 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bursztyn, H., Cattaneo, A.S., Mehta, R., Zambon, M.: Generalized reduction via graded geometry. In preparationGoogle Scholar
  6. 6.
    Calvo I., Falceto F.: Poisson reduction and branes in Poisson-sigma models. Lett. Math. Phys. 70(3), 231–247 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Cattaneo A.S., Zambon M.: Coisotropic embeddings in Poisson manifolds. Trans. A.M.S. 361, 3721–3746 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Cattaneo, A.S., Zambon, M.: Graded geometry and Poisson reduction. American Institute of Physics Conference Proceedings 1093, College park, MD: Amer. Dist.of.Phys., 2009 pp. 48–56.Google Scholar
  9. 9.
    Coste, A., Dazord, P., Weinstein, A.: Groupoï des symplectiques. In Publications du Département de Mathématiques. Nouvelle Série. A, Vol. 2, Volume 87 of Publ. Dép. Math. Nouvelle Sér. A, Lyon: Univ. Claude-Bernard, 1987, pp. i–ii, 1–62Google Scholar
  10. 10.
    Falceto F., Zambon M.: An extension of the Marsden-Ratiu reduction for Poisson manifolds. Lett. Math. Phys. 85, 203–219 (2008)MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Fernandes R.L., Iglesias Ponte D.: Integrability of Poisson-Lie group actions. Lett. Math. Phys. 90(1–3), 137–159 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Fernandes R.L., Ortega J.-P., Ratiu T.S.: The momentum map in Poisson geometry. Amer. J. Math. 131(5), 1261–1310 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Forrester-Barker, M.: Group objects and internal categories. [math.CT], 2002
  14. 14.
    Gerstenhaber M.: On the Deformation of Rings and Algebras: II. Ann. of Math. 84(1), 1–19 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Khudaverdian, O.M.: Batalin-Vilkovisky formalism and odd symplectic geometry. In: Geometry and integrable models (Dubna, 1994), River Edge, NJ: World Sci. Publ., 1996, pp. 144–181Google Scholar
  16. 16.
    Kosmann-Schwarzbach Y.: From Poisson algebras to Gerstenhaber algebras. Ann. Inst. Fourier (Grenoble) 46(5), 1243–1274 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Kosmann-Schwarzbach Y.: Derived brackets. Lett. Math. Phys. 69, 61–87 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Lu, J.-H.: Multiplicative and affine poisson structures on lie groups, 1990, Ph.D. Thesis, U.C. Berkeley, available at
  19. 19.
    Mackenzie K.: Classification of principal bundles and Lie groupoids with prescribed gauge group bundle. J. Pure Appl. Algebra 58(2), 181–208 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Mackenzie, K.C.H.: General theory of Lie groupoids and Lie algebroids, Volume 213 of London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press, 2005Google Scholar
  21. 21.
    Marsden J.E., Ratiu T.: Reduction of Poisson manifolds. Lett. Math. Phys. 11(2), 161–169 (1986)MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 22.
    Moerdijk I., Mrčun J.: On the integrability of Lie subalgebroids. Adv. Math. 204(1), 101–115 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Roytenberg, D.: On the structure of graded symplectic supermanifolds and Courant algebroids. In: Quantization, Poisson brackets and beyond (Manchester, 2001), Volume 315 of Contemp. Math. Providence, RI: Amer. Math. Soc., 2002. pp. 169–185Google Scholar
  24. 24.
    Schwarz A.: Geometry of Batalin-Vilkovisky quantization. Commun. Math. Phys. 155(2), 249–260 (1993)ADSzbMATHCrossRefGoogle Scholar
  25. 25.
    Schwarz A.: Semiclassical approximation in Batalin-Vilkovisky formalism. Commun. Math. Phys. 158(2), 373–396 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    Ševera, P.: Integration of Courant algebroids and its relatives (a first glance), Letter to Alan Weinstein.
  27. 27.
    Vaĭntrob, A.Y.: Lie algebroids and homological vector fields. Usp. Mat. Nauk, 52(2(314)), 161–162 (1997). Translation in Russ. Math. Surve. 52, no. 2, 428–429 (1997)Google Scholar
  28. 28.
    Varadarajan, V.S.: Lie groups, Lie algebras, and their representations, Volume 102 of Graduate Texts in Mathematics. New York: Springer-Verlag 1984. reprint of the 1974 editionGoogle Scholar
  29. 29.
    Varadarajan, V.S.: Supersymmetry for mathematicians: an introduction, Volume 11 of Courant Lecture Notes in Mathematics. New York: New York University Courant Institute of Mathematical Sciences, 2004Google Scholar
  30. 30.
    Voronov, T.: Graded manifolds and Drinfeld doubles for Lie bialgebroids. In: Quantization, Poisson brackets and beyond (Manchester, 2001), Volume 315 of Contemp. Math., Providence, RI: Amer. Math. Soc., 2002, pp. 131–168Google Scholar
  31. 31.
    Voronov, T.: Mackenzie theory and Q-manifolds. [math.06], 2006
  32. 32.
    Voronov, T.T.: Q-manifolds and higher analogs of Lie algebroids. In: XXIX Workshop on Geometric Methods in Physics, Volume 1307 of AIP Conf. Proc., Melville, NY: Amer. Inst. Phys, 2010, pp. 191–202Google Scholar
  33. 33.
    Weinstein A.: Coisotropic calculus and Poisson groupoids. J. Math. Soc. Japan 40(4), 705–727 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Wockel C.: Principal 2-bundles and their gauge 2-groups. Forum Math. 23(3), 565–610 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Zambon, M., Zhu, C.: Higher Lie algebra actions on Lie algebroids. J. Geom. Phys. 64, 155–173 (2013). http://arxiv/org/abs/1012.0428v2 [math.D6]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für MathematikUniversität Zürich-IrchelZürichSwitzerland
  2. 2.Departamentos de Matematica PuraUniversidade do PortoPortoPortugal

Personalised recommendations