Skip to main content
Log in

A Supergeometric Approach to Poisson Reduction

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This work introduces a unified approach to the reduction of Poisson manifolds using their description by graded symplectic manifolds. This yields a generalization of the classical Poisson reduction by distributions and allows one to construct actions of strict Lie 2-groups and to describe the corresponding reductions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov M., Schwarz A., Zaboronsky O., Kontsevich M.: The geometry of the master equation and topological quantum field theory. Internat. J. Mod. Phys. A 12(7), 1405–1429 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Baez, J.C., Dolan, J.: Categorification. In: Higher category theory (Evanston, IL, 1997), Volume 230 of Contemp. Math. Providence, RI: Amer. Math. Soc., 1998, pp. 1–36

  3. Baez, J. C., Lauda, A.D.: Higher-dimensional algebra. V. 2-groups. Theory Appl. Categ. 12, 423–491 (electronic) (2004)

    Google Scholar 

  4. Brown R., Mackenzie K.C.H.: Determination of a double Lie groupoid by its core diagram. J. Pure Appl. Algebra 80(3), 237–272 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bursztyn, H., Cattaneo, A.S., Mehta, R., Zambon, M.: Generalized reduction via graded geometry. In preparation

  6. Calvo I., Falceto F.: Poisson reduction and branes in Poisson-sigma models. Lett. Math. Phys. 70(3), 231–247 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Cattaneo A.S., Zambon M.: Coisotropic embeddings in Poisson manifolds. Trans. A.M.S. 361, 3721–3746 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cattaneo, A.S., Zambon, M.: Graded geometry and Poisson reduction. American Institute of Physics Conference Proceedings 1093, College park, MD: Amer. Dist.of.Phys., 2009 pp. 48–56.

  9. Coste, A., Dazord, P., Weinstein, A.: Groupoï des symplectiques. In Publications du Département de Mathématiques. Nouvelle Série. A, Vol. 2, Volume 87 of Publ. Dép. Math. Nouvelle Sér. A, Lyon: Univ. Claude-Bernard, 1987, pp. i–ii, 1–62

  10. Falceto F., Zambon M.: An extension of the Marsden-Ratiu reduction for Poisson manifolds. Lett. Math. Phys. 85, 203–219 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Fernandes R.L., Iglesias Ponte D.: Integrability of Poisson-Lie group actions. Lett. Math. Phys. 90(1–3), 137–159 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Fernandes R.L., Ortega J.-P., Ratiu T.S.: The momentum map in Poisson geometry. Amer. J. Math. 131(5), 1261–1310 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Forrester-Barker, M.: Group objects and internal categories. http://arXiv.org/abs/math/0212065vL [math.CT], 2002

  14. Gerstenhaber M.: On the Deformation of Rings and Algebras: II. Ann. of Math. 84(1), 1–19 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khudaverdian, O.M.: Batalin-Vilkovisky formalism and odd symplectic geometry. In: Geometry and integrable models (Dubna, 1994), River Edge, NJ: World Sci. Publ., 1996, pp. 144–181

  16. Kosmann-Schwarzbach Y.: From Poisson algebras to Gerstenhaber algebras. Ann. Inst. Fourier (Grenoble) 46(5), 1243–1274 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kosmann-Schwarzbach Y.: Derived brackets. Lett. Math. Phys. 69, 61–87 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Lu, J.-H.: Multiplicative and affine poisson structures on lie groups, 1990, Ph.D. Thesis, U.C. Berkeley, available at http://hkumath.hku.hk/~jhlu/publications.html

  19. Mackenzie K.: Classification of principal bundles and Lie groupoids with prescribed gauge group bundle. J. Pure Appl. Algebra 58(2), 181–208 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mackenzie, K.C.H.: General theory of Lie groupoids and Lie algebroids, Volume 213 of London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press, 2005

  21. Marsden J.E., Ratiu T.: Reduction of Poisson manifolds. Lett. Math. Phys. 11(2), 161–169 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Moerdijk I., Mrčun J.: On the integrability of Lie subalgebroids. Adv. Math. 204(1), 101–115 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Roytenberg, D.: On the structure of graded symplectic supermanifolds and Courant algebroids. In: Quantization, Poisson brackets and beyond (Manchester, 2001), Volume 315 of Contemp. Math. Providence, RI: Amer. Math. Soc., 2002. pp. 169–185

  24. Schwarz A.: Geometry of Batalin-Vilkovisky quantization. Commun. Math. Phys. 155(2), 249–260 (1993)

    Article  ADS  MATH  Google Scholar 

  25. Schwarz A.: Semiclassical approximation in Batalin-Vilkovisky formalism. Commun. Math. Phys. 158(2), 373–396 (1993)

    Article  ADS  Google Scholar 

  26. Ševera, P.: Integration of Courant algebroids and its relatives (a first glance), Letter to Alan Weinstein. http://sophia.dtp.fmph.uniba.sk/~severa/letters/no8.ps

  27. Vaĭntrob, A.Y.: Lie algebroids and homological vector fields. Usp. Mat. Nauk, 52(2(314)), 161–162 (1997). Translation in Russ. Math. Surve. 52, no. 2, 428–429 (1997)

  28. Varadarajan, V.S.: Lie groups, Lie algebras, and their representations, Volume 102 of Graduate Texts in Mathematics. New York: Springer-Verlag 1984. reprint of the 1974 edition

  29. Varadarajan, V.S.: Supersymmetry for mathematicians: an introduction, Volume 11 of Courant Lecture Notes in Mathematics. New York: New York University Courant Institute of Mathematical Sciences, 2004

  30. Voronov, T.: Graded manifolds and Drinfeld doubles for Lie bialgebroids. In: Quantization, Poisson brackets and beyond (Manchester, 2001), Volume 315 of Contemp. Math., Providence, RI: Amer. Math. Soc., 2002, pp. 131–168

  31. Voronov, T.: Mackenzie theory and Q-manifolds. http://arxiv.org/abs/math/0608111v2 [math.06], 2006

  32. Voronov, T.T.: Q-manifolds and higher analogs of Lie algebroids. In: XXIX Workshop on Geometric Methods in Physics, Volume 1307 of AIP Conf. Proc., Melville, NY: Amer. Inst. Phys, 2010, pp. 191–202

  33. Weinstein A.: Coisotropic calculus and Poisson groupoids. J. Math. Soc. Japan 40(4), 705–727 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wockel C.: Principal 2-bundles and their gauge 2-groups. Forum Math. 23(3), 565–610 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zambon, M., Zhu, C.: Higher Lie algebra actions on Lie algebroids. J. Geom. Phys. 64, 155–173 (2013). http://arxiv/org/abs/1012.0428v2 [math.D6]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zambon.

Additional information

Communicated by N. A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cattaneo, A.S., Zambon, M. A Supergeometric Approach to Poisson Reduction. Commun. Math. Phys. 318, 675–716 (2013). https://doi.org/10.1007/s00220-013-1664-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1664-7

Keywords

Navigation