Communications in Mathematical Physics

, Volume 317, Issue 2, pp 485–502 | Cite as

Enhancement of Near-Cloaking. Part II: The Helmholtz Equation

  • Habib Ammari
  • Hyeonbae Kang
  • Hyundae Lee
  • Mikyoung Lim
Article

Abstract

The aim of this paper is to extend the method of Ammari et al. (Commun. Math. Phys., 2012) to scattering problems. We construct very effective near-cloaking structures for the scattering problem at a fixed frequency. These new structures are, before using the transformation optics, layered structures and are designed so that their first scattering coefficients vanish. Inside the cloaking region, any target has near-zero scattering cross section for a band of frequencies. We analytically show that our new construction significantly enhances the cloaking effect for the Helmholtz equation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. New York: Dover Publications, 9th edition, 1970, pp. 365–366Google Scholar
  2. 2.
    Alú A., Engheta N.: Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72, 106623 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Alú A., Engheta N.: Cloaking and transparency for collections of particles with metamaterial and plasmonic covers. Optics Express 15, 7578–7590 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Ammari, H., Ciraolo, G., Kang, H., Lee, H., Milton, G.: Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance. submitted, available at http://arxiv.org/abs/1109.0979v2 [math.AP], 2012
  5. 5.
    Ammari H., Garnier J., Jugnon V., Kang H., Lee H., Lim M.: Enhancement of near-cloaking. Part III: Numerical simulations, statistical stability, and related questions. Contemp. Math. 577, 1–24 (2012)CrossRefGoogle Scholar
  6. 6.
    Ammari, H., Kang, H.: Polarization and Moment Tensors with Applications to Inverse Problems and Effective Medium Theory, Applied Mathematical Sciences, Vol. 162, New York: Springer-Verlag, 2007Google Scholar
  7. 7.
    Ammari H., Kang H.: Boundary layer techniques for solving the Helmholtz equation in the presence of small inhomogeneities. J. Math. Anal. Appl. 296, 190–208 (2004)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Ammari, H., Kang, H., Lee, H., Lim, M.: Enhancement of near cloaking using generalized polarization tensors vanishing structures. Part I: The conductivity problem. Commun. Math. Phys., 2012. doi:10.1007/s00220-012-1615-8
  9. 9.
    Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th edition. Cambridge: Cambridge University Press, 1997Google Scholar
  10. 10.
    Colton, D., Kress, R.: Inverse Acoustic and Electromagnctic Scaftering Theory. Berlin: Springer, 1992Google Scholar
  11. 11.
    Bryan K., Leise T.: Impedance Imaging, inverse problems, and Harry Potter’s Cloak. SIAM Rev. 52, 359–377 (2010)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Greenleaf A., Kurylev Y., Lassas M., Uhlmann G.: Approximate quantum cloaking and almost trapped states. Phys. Rev. Lett. 101, 220404 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Greenleaf A., Kurylev Y., Lassas M., Uhlmann G.: Full-wave invisibility of active devices at all frequencies. Comm. Math. Phys. 275, 749–789 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Greenleaf A., Kurylev Y., Lassas M., Uhlmann G.: Cloaking a sensor via transformation optics. Phys. Rev. E 83, 016603 (2011)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Greenleaf A., Kurylev Y., Lassas M., Uhlmann G.: Approximate quantum and acoustic cloaking. J. Spectral Theory 1, 27–80 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Greenleaf A., Kurylev Y., Lassas M., Uhlmann G.: Cloaking devices, electromagnetic wormholes, and transformation optics. SIAM Rev. 51, 3–33 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Greenleaf A., Lassas M., Uhlmann G.: On nonuniqueness for Calderon’s inverse problem. Math. Res. Lett. 10, 685–693 (2003)MathSciNetMATHGoogle Scholar
  18. 18.
    Guevara Vasquez F., Milton G.W., Onofrei D.: Active exterior cloaking for the 2D Laplace and Helmholtz Equations. Phys. Rev. Lett. 103, 073901 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Guevara Vasquez F., Milton G.W., Onofrei D.: Broadband exterior cloaking. Optics Express 17, 14800–14805 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Kohn R.V., Onofrei D., Vogelius M.S., Weinstein M.I.: Cloaking via change of variables for the Helmholtz equation. Comm. Pure Appl. Math. 63, 973–1016 (2010)MathSciNetMATHGoogle Scholar
  21. 21.
    Kohn, R.V., Shen, H., Vogelius, M.S., Weinstein, M.I.: Cloaking via change of variables in electric impedance tomography, Inverse Problems, 24, article 015016 (2008)Google Scholar
  22. 22.
    Lassas M., Zhou T.: Two dimensional invisibility cloaking for Helmholtz equation and non-local boundary conditions. Math. Res. Lett. 18, 473–488 (2011)MathSciNetMATHGoogle Scholar
  23. 23.
    Leonhardt U.: Optical conforming mapping. Science 312, 1777–1780 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    Liu H.: Virtual reshaping and invisibility in obstacle scattering. Inverse Problems 25, 044006 (2009)CrossRefGoogle Scholar
  25. 25.
    Milton G., Nicorovici N.A.: On the cloaking effects associated with anomalous localized resonance. Proc. R. Soc. A 462, 3027–3059 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  26. 26.
    Milton G., Nicorovici N.A., McPhedran R.C., Podolskiy V.A.: A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance. Proc. R. Soc. A 461, 3999–4034 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    Nguyen H.M.: Cloaking via change of variables for the Helmholtz equation in the whole space. Comm. Pure Appl. Math. 63, 1505–1524 (2010)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Pendry J.B., Schurig D., Smith D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  29. 29.
    Taylor, M.E.: Partial Differential Equations II. Qualitative Studies of Linear Equations. Appl. Math. Sci., Vol. 116, New York: Springer-Verlag, 1996Google Scholar
  30. 30.
    Tretyakov S., Alitalo P., Luukkonen O., Simovski C.: Broadband electromagnetic cloaking of long cylindrical objects. Phys. Rev. Lett. 103, 103905 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    Urzhumov Y.A., Kundtz N.B., Smith D.R., Pendry J.B.: Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches. J. Opt. 13, 024002 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Watson, G.N.: Theory of Bessel Functions, 2nd edition, Cambridge: Cambridge University Press, 1944Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Habib Ammari
    • 1
  • Hyeonbae Kang
    • 2
  • Hyundae Lee
    • 2
  • Mikyoung Lim
    • 3
  1. 1.Department of Mathematics and ApplicationsEcole Normale SupérieureParisFrance
  2. 2.Department of MathematicsInha UniversityIncheonKorea
  3. 3.Department of Mathematical SciencesKorean Advanced Institute of Science and TechnologyDaejeonKorea

Personalised recommendations