Communications in Mathematical Physics

, Volume 317, Issue 2, pp 447–483 | Cite as

Asymptotic Expansion of β Matrix Models in the One-cut Regime

Article

Abstract

We prove the existence of a 1/N expansion to all orders in β matrix models with a confining, offcritical potential corresponding to an equilibrium measure with a connected support. Thus, the coefficients of the expansion can be obtained recursively by the “topological recursion” derived in Chekhov and Eynard (JHEP 0612:026, 2006). Our method relies on the combination of a priori bounds on the correlators and the study of Schwinger-Dyson equations, thanks to the uses of classical complex analysis techniques. These a priori bounds can be derived following (Boutet de Monvel et al. in J Stat Phys 79(3–4):585–611, 1995; Johansson in Duke Math J 91(1):151–204, 1998; Kriecherbauer and Shcherbina in Fluctuations of eigenvalues of matrix models and their applications, 2010) or for strictly convex potentials by using concentration of measure (Anderson et al. in An introduction to random matrices, Sect. 2.3, Cambridge University Press, Cambridge, 2010). Doing so, we extend the strategy of Guionnet and Maurel-Segala (Ann Probab 35:2160–2212, 2007), from the hermitian models (β = 2) and perturbative potentials, to general β models. The existence of the first correction in 1/N was considered in Johansson (1998) and more recently in Kriecherbauer and Shcherbina (2010). Here, by taking similar hypotheses, we extend the result to all orders in 1/N.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACKM93.
    Ambjørn J., Chekhov L.O., Kristjansen C., Makeenko Yu.: Matrix model calculations beyond the spherical limit. Nucl. Phys. B 404, 127–172 (1993)ADSCrossRefGoogle Scholar
  2. ACKM95.
    Ambjørn J., Chekhov L.O., Kristjansen C., Makeenko Yu.: Erratum to Matrix model calculations beyond the spherical limit. Nucl. Phys. B 449, 681 (1995)ADSCrossRefGoogle Scholar
  3. ACM92.
    Ambjørn J., Chekhov L.O., Makeenko Yu.: Higher genus correlators from the hermitian 1-matrix model. Phys. Lett. B 282, 341–348 (1992)MathSciNetADSCrossRefGoogle Scholar
  4. AG97.
    Ben Arous G., Guionnet A.: Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy. Prob. Th. Rel. Fields 108(4), 517–542 (1997)MathSciNetMATHCrossRefGoogle Scholar
  5. AGZ10.
    Anderson, G., Guionnet, A., Zeitouni, O.: An introduction to random matrices. Cambridge: Cambridge University Press, 2010, available at http://www.wisdom.weizmann.ac.il/~zeitouni/
  6. AM90.
    Ambjørn J., Makeenko Yu.: Properties of loop equations for the hermitian matrix model and for two-dimensional gravity. Mod. Phys. Lett. A 5, 1753–1763 (1990)ADSCrossRefGoogle Scholar
  7. APS01.
    Albeverio S., Pastur L., Shcherbina M.: On the 1/N expansion for some unitary invariant ensembles of random matrices. Commun. Math. Phys. 224, 271–305 (2001)MathSciNetADSMATHCrossRefGoogle Scholar
  8. BE11.
    Borot G., Eynard B.: Enumeration of maps with self avoiding loops and the \({\mathcal{O}(\mathfrak{n})}\) model on random lattices of all topologies. J. Stat. Mech. 2011(1), P01010 (2011)MathSciNetCrossRefGoogle Scholar
  9. Bee94.
    Beenakker C.W.J.: Universality of Brézin and Zee’s spectral correlator. Nucl. Phys. B 422, 515–520 (1994)ADSCrossRefGoogle Scholar
  10. BI99.
    Bleher P., Its A.: Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model. Ann. Math. 150, 185–266 (1999)MathSciNetMATHCrossRefGoogle Scholar
  11. BIPZ78.
    Brézin É., Itzykson C., Parisi G., Zuber J.-B.: Planar diagrams. Commun. Math. Phys. 59, 35–51 (1978)ADSMATHCrossRefGoogle Scholar
  12. CE06.
    Chekhov L.O., Eynard B.: Matrix eigenvalue model: Feynman graph technique for all genera. JHEP 0612, 026 (2006)MathSciNetADSCrossRefGoogle Scholar
  13. DE02.
    Dumitriu I., Edelman A.: Matrix models for beta ensembles. J. Math. Phys. 43(11), 5830–5847 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  14. Dei99.
    Deift, P.: Orthogonal polynomials and random matrices: a Riemann-Hilbert approach. Courant Lecture Notes in Mathematics, Vol. 3, New York: New York University Courant Institute of Mathematical Sciences, 1999Google Scholar
  15. DKM+97.
    Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X.: Asymptotics for polynomials orthogonal with respect to varying exponential weights. Int. Math. Res. Notices 16, 759–782 (1997)MathSciNetCrossRefGoogle Scholar
  16. DKM+99a.
    Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X.: Strong asymptotics of orthogonal polynomials with respect to exponential weights via Riemann-Hilbert techniques. Comm. Pure Appl. Math. 52(12), 1491–1552 (1999)MathSciNetMATHCrossRefGoogle Scholar
  17. DKM+99b.
    Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math. 52(11), 1335–1425 (1999)MathSciNetMATHCrossRefGoogle Scholar
  18. dMPS95.
    Boutet de Monvel A., Pastur L., Shcherbina M.: On the statistical mechanics approach in the random matrix theory. Integrated density of states. J. Stat. Phys. 79(3-4), 585–611 (1995)MathSciNetADSMATHGoogle Scholar
  19. DZ95.
    Deift P., Zhou X.: A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the mKdV equation. Ann. Math. 137, 295–368 (1995)MathSciNetGoogle Scholar
  20. EM03.
    Ercolani N.M., McLaughlin K.T.-R.: Asymptotics of the partition function for random matrices via Riemann-Hilbert techniques, and applications to graphical enumeration. Int. Math. Res. Not. 14, 755–820 (2003)MathSciNetCrossRefGoogle Scholar
  21. EO07.
    Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys. 1, 347–452 (2007)Google Scholar
  22. Eyn04.
    Eynard B.: All genus correlation functions for the hermitian 1-matrix model. JHEP 0411, 031 (2004)MathSciNetADSCrossRefGoogle Scholar
  23. Eyn09.
    Eynard B.: Large N expansion of convergent matrix integrals, holomorphic anomalies, and background independence. JHEP 0903, 003 (2009)MathSciNetADSCrossRefGoogle Scholar
  24. FIK92.
    Fokas A.S., Its A.R., Kitaev A.V.: The isomonodromy approach to matrix models in 2d quantum gravity. Commun. Math. Phys. 147, 395–430 (1992)MathSciNetADSMATHCrossRefGoogle Scholar
  25. GMS07.
    Guionnet A., Maurel-Segala E.: Second order asymptotics for matrix models. Ann. Probab. 35, 2160–2212 (2007)MathSciNetMATHCrossRefGoogle Scholar
  26. GZ00.
    Guionnet A., Zeitouni O.: Concentration of the spectral measure for large matrices. Electron. Comm. Probab. 5, 119–136 (2000)MathSciNetMATHGoogle Scholar
  27. Joh98.
    Johansson K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91(1), 151–204 (1998)MathSciNetMATHCrossRefGoogle Scholar
  28. KS10.
    Kriecherbauer, T., Shcherbina, M.: Fluctuations of eigenvalues of matrix models and their applications. http://arxiv.org/abs/1003.6121v1 [math-ph]
  29. Meh04.
    Mehta, M.L.: Random matrices. Third ed. Pure and Applied Mathematics, Vol. 142, Amsterdam: Elsevier/Academic, 2004Google Scholar
  30. MS.
    Maurel-Segala, E.: Private communicationGoogle Scholar
  31. Pas72.
    Pastur L.: On the spectrum of random matrices. Teor. Mat. Fiz. 10(1), 102–112 (1972)MathSciNetCrossRefGoogle Scholar
  32. PS11.
    Pastur, L., Shcherbina, M.: Eigenvalue distribution of large random matrices. Mathematical Surveys and Monographs, Vol. 171, Providence, RI: Amer. Math. Soc., 2011Google Scholar
  33. Rid.
    Rider, B.: Talk at MSRI. Semester on Random Matrix Theory, September 2010.Google Scholar
  34. RRV06.
    Ramìrez J.A., Rider B., Virág B.: Beta ensembles, stochastic Airy process, and a diffusion. J. Amer. Math. Soc. 24(4), 919–944 (2011)MathSciNetMATHCrossRefGoogle Scholar
  35. Sel44.
    Selberg A.: Remarks on a multiple integral. Norsk. Mat. Tiddskr. 26, 71–88 (1944)MathSciNetMATHGoogle Scholar
  36. Tri57.
    Tricomi, F.G.: Integral equations. Pure Appl. Math., Vol. V, London: Interscience, 1957Google Scholar
  37. Wig58.
    Wigner E.P.: On the distribution of the roots of certain symmetric matrices. Ann. of Math. (2) 67, 325–327 (1958)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut de Physique Théorique de SaclayGif-sur-Yvette CedexFrance
  2. 2.UMPA, CNRS UMR 5669, ENS LyonLyonFrance
  3. 3.Section de MathematiquesUniversite de GeneveGeneveSwitzerland

Personalised recommendations