Communications in Mathematical Physics

, Volume 317, Issue 1, pp 103–156 | Cite as

Quantum Capacity under Adversarial Quantum Noise: Arbitrarily Varying Quantum Channels

  • Rudolf Ahlswede
  • Igor Bjelaković
  • Holger Boche
  • Janis Nötzel
Article

Abstract

We investigate entanglement transmission over an unknown channel in the presence of a third party (called the adversary), which is enabled to choose the channel from a given set of memoryless but non-stationary channels without informing the legitimate sender and receiver about the particular choice that he made. This channel model is called an arbitrarily varying quantum channel (AVQC). We derive a quantum version of Ahlswede’s dichotomy for classical arbitrarily varying channels. This includes a regularized formula for the common randomness-assisted capacity for entanglement transmission of an AVQC. Quite surprisingly and in contrast to the classical analog of the problem involving the maximal and average error probability, we find that the capacity for entanglement transmission of an AVQC always equals its strong subspace transmission capacity.

These results are accompanied by different notions of symmetrizability (zero-capacity conditions) as well as by conditions for an AVQC to have a capacity described by a single-letter formula. In the final part of the paper the capacity of the erasure-AVQC is computed and some light shed on the connection between AVQCs and zero-error capacities. Additionally, we show by entirely elementary and operational arguments motivated by the theory of AVQCs that the quantum, classical, and entanglement-assisted zero-error capacities of quantum channels are generically zero and are discontinuous at every positivity point.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlswede R.: A Note on the Existence of the Weak Capacity for Channels with Arbitrarily Varying Channel Probability Functions and Its Relation to Shannon’s Zero Error Capacity. The Annals of Mathematical Statistics 41(3), 1027–1033 (1970)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Ahlswede R.: Elimination of Correlation in Random Codes for Arbitrarily Varying Channels. Z. Wahr. verw. Geb. 44, 159–175 (1978)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ahlswede R.: Coloring Hypergraphs: A New Approach to Multi-user Source Coding-II. J. Comb., Info. & Sys. Sci. 5(3), 220–268 (1980)MathSciNetMATHGoogle Scholar
  4. 4.
    Ahlswede R.: Arbitrarily Varying Channels with States Sequence Known to the Sender. IEEE Trans. Inf. Th. 32, 621–629 (1986)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Ahlswede R., Blinovsky V.: Classical Capacity of Classical-Quantum Arbitrarily Varying Channels. IEEE Trans. Inf. Th. 53(2), 526–533 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ahlswede R., Wolfowitz J.: The Capacity of a Channel with Arbitrarily Varying Channel Probability Functions and Binary Output Alphabet. Z. Wahr. verw. Geb. 15, 186–194 (1970)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Barnum H., Knill E., Nielsen M.A.: On Quantum Fidelities and Channel Capacities. IEEE Trans. Inf. Theory 46(4), 1317–1329 (2000)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bennett C.H., DiVincenzo D.P., Smolin J.A.: Capacities of Quantum Erasure Channels. Phys. Rev. Lett. 78, 3217–3220 (1997)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Bjelaković I., Boche H., Nötzel J.: Quantum capacity of a class of compound channels. Phys. Rev. A 78, 042331 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Bjelaković, I., Boche, H., Nötzel, J.: Entanglement transmission and generation under channel uncertainty: Universal quantum channel coding. Commun. Math. Phys. 292, 55–97 (2009); Bjelaković, I., Boche, H., Nötzel, J.: Erratum to ‘Entanglement transmission and generation under channel uncertainty: Universal quantum channel coding’. Coummn. Math. Phys.Google Scholar
  11. 11.
    Blackwell D., Breiman L., Thomasian A.J.: The capacities of certain channel classes under random coding. Ann. Math. Stat. 31, 558–567 (1960)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Choi M.-D.: Completely Positive Linear Maps on Complex Matrices. Lin. Alg. App. 10, 285–290 (1975)MATHCrossRefGoogle Scholar
  13. 13.
    Csiszar, I., Körner, J.: Information Theory; Coding Theorems for Discrete Memoryless Systems. Budapest, New York: Akadémiai Kiadó, Academic Press Inc., 1981Google Scholar
  14. 14.
    Csiszar I., Narayan P.: The Capacity of the Arbitrarily Varying Channel Revisited: Positivity, Constraints. IEEE Trans. Inf. Th. 34(2), 181–193 (1989)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Devetak I., Shor P.W.: The Capacity of a Quantum Channel for Simultaneous Transmission of Classical and Quantum Information. Commun. Math. Phys. 256(2), 287–303 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    Duan, R., Severini, S., Winter, A.: Zero-error communication via quantum channels, non-commutative graphs and a quantum Lovász θ function. http://arxiv.org/abs/1002.2514v2 [quant-ph], 2010
  17. 17.
    Ericson T.: Exponential Error Bounds for Random Codes in the Arbitrarily Varying Channel. IEEE Trans. Inf. Th. 31(1), 42–48 (1985)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Fekete M.: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Zeit. 17, 228 (1923)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Gilbert E.N.: A comparison of signaling alphabets. Bell System Tech. J. 31, 504–522 (1952)Google Scholar
  20. 20.
    Horodecki M., Horodecki P.: Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59(6), 4206 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    Horodecki M., Horodecki P., Horodecki R.: General teleportation channel, singlet fraction, and quasidistillation . Phys. Rev. A 60, 1888–1898 (1999)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Kakutani S.: A Generalization of Brouwer’s Fixed Point Theorem. Duke Math. J. 8(3), 457–459 (1941)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kiefer J., Wolfowitz J.: Channels with arbitrarily varying channel probability functions. Inf. and Cont. 5, 44–54 (1962)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation. Graduate Studies in Mathematics 47, Providence, RI: Amer. Math. Soc., 2002Google Scholar
  25. 25.
    Knill E., Laflamme R.: Theory of quantum error-correcting codes. Phys. Rev. A 55(2), 900–911 (1997)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Körner J., Orlitsky A.: Zero-error Information Theory. IEEE Trans. Inf. Theory 44(6), 2207–2229 (1998)MATHCrossRefGoogle Scholar
  27. 27.
    Leung D., Smith G.: Continuity of quantum channel capacities. Commun. Math. Phys. 292, 201–215 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  28. 28.
    Lieb E.H., Ruskai M.B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14, 1938 (1973)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    Matousek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics. 212, Berlin-Heidelberg-New York: Springer, 2002Google Scholar
  30. 30.
    Milman, V.D., Schechtman, G.: Asymptotic Theory of Finite Dimensional Normed Spaces. Lecture Notes in Mathematics, 1200, Berlin-Heidelberg-New York: Springer-Verlag, 1986Google Scholar
  31. 31.
    Paulsen, V.: Completely Bounded Maps and Operator Algebras. Cambridge Studies in Advanced Mathematics 78, Cambridge: Cambridge University Press, 2002Google Scholar
  32. 32.
    Pólya G., Szegö V. Problems and Theorems in Analysis I. Berlin-Heidelberg-New York: Springer, 1998Google Scholar
  33. 33.
    Schumacher B., Nielsen M.A.: Quantum data processing and error correction. Phys. Rev. A 54(4), 2629 (1996)MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Shannon, C.E.: The zero error capacity of a noisy channel. IRE Trans. Inf. Th. IT-2, 8–19 (1956)Google Scholar
  35. 35.
    von Neumann J.: Zur Theorie der Gesellschaftsspiele. Math. Ann. 100, 295–320 (1928)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Webster R.: Convexity. Oxford University Press, Oxford (1994)MATHGoogle Scholar
  37. 37.
    Yard J., Devetak I., Hayden P.: Capacity theorems for quantum multiple access channels: Classical-quantum and quantum-quantum capacity Regions. IEEE Trans. Inf. Th. 54, 3091 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rudolf Ahlswede
    • 1
  • Igor Bjelaković
    • 2
  • Holger Boche
    • 3
  • Janis Nötzel
    • 2
  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldGermany
  2. 2.Theoretische InformationstechnikTechnische Universität MünchenMünchenGermany
  3. 3.Lehrstuhl für Theoretische InformationstechnikTechnische Universität MünchenMünchenGermany

Personalised recommendations