Skip to main content
Log in

Characteristic Classes and Hitchin Systems. General Construction

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider topologically non-trivial Higgs G-bundles over Riemann surfaces Σ g with marked points and the corresponding Hitchin systems. We show that if G is not simply-connected, then there exists a finite number of different sectors of the Higgs bundles endowed with the Hitchin Hamiltonians. They correspond to different characteristic classes of the underlying bundles defined as elements of \({H^{2}(\Sigma_g, \mathcal{Z}(G))}\) , (\({\mathcal{Z}(G)}\) is a center of G). We define the conformal version CG of G - an analog of GL(N) for SL(N), and relate the characteristic classes with degrees of CG-bundles. We describe explicitly bundles in the genus one (g =  1) case. If Σ1 has one marked point and the bundles are trivial then the Hitchin systems coincide with Calogero-Moser (CM) systems. For the nontrivial bundles we call the corresponding systems the modified Calogero-Moser (MCM) systems. Their phase space has the same dimension as the phase space of the CM systems with spin variables, but less number of particles and greater number of spin variables. Starting with these bundles we construct Lax operators, quadratic Hamiltonians, and define the phase spaces and the Poisson structure using dynamical r-matrices. The latter are completion of the classification list of Etingof-Varchenko corresponding to the trivial bundles. To describe the systems we use a special basis in the Lie algebras that generalizes the basis of ’t Hooft matrices for sl(N). We find that the MCM systems contain the standard CM subsystems related to some (unbroken) subalgebras. The configuration space of the CM particles is the moduli space of the stable holomorphic bundles with non-trivial characteristic classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah M.: Vector bundles over an elliptic curve. Proc. London Math. Soc. 7, 414–452 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, V.: Mathematical Methods in Classical Mechanics. Berlin-Heidelberg-NewYork: Springer, 1978

  3. Avan J., Talon M.: Classical R-matrix structure for the Calogero model. Phys. Lett. B 303, 33–37 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  4. Babelon O., Viallet C-M.: Hamiltonian structures and Lax equations. Phys. Lett. B 237, 411 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  5. Belavin A., Drinfeld V.: Solutions of the classical Yang - Baxter equation for simple Lie algebras. Funct. Anal. Appl. 16(N 3), 159–180 (1982)

    Article  MathSciNet  Google Scholar 

  6. Bernstein, J., Schwarzman, O.: Chevalley’s theorem for complex crystallographic Coxeter groups. (Russian) Funkt. Anal. i Prilo. 12(4), 79–80 (1978); Complex crystallographic Coxeter groups and affine root systems. J. Nonlinear Math. Phys. 13(2), 163–182 (2006)

    Google Scholar 

  7. Billey E., Avan J., Babelon O.: The r-matrix structure of the Euler-Calogero-Moser model. Phys. Lett. A 186, 114–118 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Bordner A., Corrigan E., Sasaki R.: Calogero-Moser models: I. A new formulation. Progr. Theor. Phys. 100, 1107–1129 (1998)

    MathSciNet  ADS  Google Scholar 

  9. Bourbaki, N.: Lie Groups and Lie Algebras: Chapters 4–6. Berlin-Heidelberg-New York: Springer-Verlag, 2002

  10. Braden H., Suzuki T.: R-matrices for Elliptic Calogero-Moser Models. Lett. Math. Phys. 30, 147–158 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Calogero, F.: Solution of the one-dimensional n-body problem with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12, 419–436 (1971); Exactly solvable one-dimensional many-body problem. Lett. Nuovo Cim. 13, 411 (1975)

    Google Scholar 

  12. Dirac, P.: Lectures on quantum mechanics. Yeshiva Univ., NY: Academic Press, 1967

  13. Braden H.W., Dolgushev V.A., Olshanetsky M.A., Zotov A.V.: Classical R-Matrices and the Feigin-Odesskii Algebra via Hamiltonian and Poisson Reductions. J. Phys. A 36, 6979–7000 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Enriquez B., Rubtsov V.: Hitchin systems, higher Gaudin operators and R-matrices. Math. Res. Lett. 3, 343–357 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Etingof, P.: Lectures on Calogero-Moser systems. http://arxiv.org/abs/math/0606233v4 [math.QA], 2009

  16. Etingof, P., Schiffmann, O.: Lectures on the dynamical Yang-Baxter equations, http://arxiv.org/abs/math/9908064v2 [math.QA], 2000

  17. Etingof P., Varchenko A.: Geometry and classification of solutions of the classical dynamical Yang-Baxter equation. Commun. Math. Phys. 192, 77–120 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Fairlie D., Fletcher P., Zachos C.: Infinite Dimensional Algebras and a Trigonometric Basis for the Classical Lie Algebras. J. Math. Phys. 31, 1088–1094 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Feher L.: Poisson-Lie dynamical r-matrices from Dirac reduction. Czech. J. Phys. 54, 1265–1274 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  20. Felder, G.: Conformal field theory and integrable systems associated with elliptic curves, Proc. of the ICM 94, Basel: Birkhaeuser, 1994, pp. 1247–1255

  21. Felder G., Gawedzki K., Kupiainen A.: Spectra Of Wess-Zumino-Witten Models With Arbitrary Simple Groups. Commun. Math. Phys. 117, 127–158 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Friedman, R., Morgan, J.: Holomorphic principal bundles over elliptic curves, http://arxiv.org/abs/math/9811130v1 [math.AG], 1998 R. Friedman, J. Morgan, Holomorphic Principal Bundles Over Elliptic Curves II: The Parabolic Construction, http://arxiv.org/abs/math/0006174v2 [math.AG], 2001

  23. Friedman R., Morgan J., Witten E.: Principal G-bundles over elliptic curves. Math. Res. Lett. 5, 97–118 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Gibbons J., Hermsen T.: A generalization of the Calogero-Moser systems. Physica 11D, 337–348 (1984)

    MathSciNet  ADS  Google Scholar 

  25. Gordeev N., Popov V.: Automorphism groups of finite dimensional simple algebras. Ann. of Math. 158, 1041–1065 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gorsky, A., Nekrasov, N.: Elliptic Calogero-Moser system from two dimensional current algebra. http://arxiv.org/abs/hep-th/9401021v1, 1994

  27. Hitchin N.: Stable bundles and integrable systems. Duke Math. Jour. 54, 91–114 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. D’Hoker E., Phong D.H.: Calogero-Moser Lax pairs with spectral parameter for general Lie algebras. Nuclear Phys. B 530, 537–610 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Hurtubise J., Markman E.: Calogero-Moser systems and Hitchin systems. Commun. Math. Phys. 223, 533–552 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Kac V.: Automorphisms of finite order of semisimple Lie algebras. Funct.Anal. and Applic. 3, 94–96 (1969)

    Google Scholar 

  31. Kapustin, A., Witten, E.: Electric-magnetic duality and the geometric Langlands program. http://arxiv.org/abs/hep-th/0604151v3, 2007

  32. Kazdan D., Kostant B., Sternberg S.: Hamiltonian group actions and dynamical systems of Calogero type. Comm. Pure Appl. Math. 31, 481–507 (1978)

    Article  MathSciNet  Google Scholar 

  33. Khesin B., Levin A., Olshanetsky M.: Bihamiltonian structures and quadratic algebras in hydrodynamics and on non-commutative torus. Comm. Math. Phys. 250, 581–612 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. : Elliptic solutions of the KP equation and integrable systems of particles. Funct. Anal. Applic. 14(N4), 45–54 (1980)

    MathSciNet  MATH  Google Scholar 

  35. Levin A., Olshanetsky M., Zotov A.: Hitchin Systems - Symplectic Hecke Correspondence and Two-dimensional Version. Comm. Math. Phys. 236, 93–133 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Levin A., Olshanetsky M.: Isomonodromic deformations and Hitchin Systems. Amer. Math. Soc. Transl. (2) 191, 223–262 (1999)

    MathSciNet  Google Scholar 

  37. Levin A., Olshanetsky M., Zotov A.: Painlevé VI, rigid tops and reflection equation. Commun. Math. Phys. 268, 67–103 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Chernyakov Yu., Levin A., Olshanetsky M., Zotov A.: Elliptic Schlesinger system and Painlevé VI. J. Phys. A 39, 12083–120102 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Zotov A.V.: 1+1 Gaudin Model. SIGMA 7, 067 (2011)

    MathSciNet  Google Scholar 

  40. Levin A., Olshanetsky M., Zotov A.: Monopoles and modifications of bundles over elliptic curves. SIGMA 5, 065 (2009)

    MathSciNet  Google Scholar 

  41. Levin, A.M., Olshanetsky, M.A., Smirnov, A.V., Zotov, A.V.: Characteristic Classes of SL (\({N, \mathbb{C}}\))-Bundles and Quantum Dynamical Elliptic R-Matrices, http://arxiv.org/abs/1208.5750v1 [math.ph], 2012

  42. Levin, A.M., Olshanetsky, M.A., Smirnov, A.V., Zotov, A.V.: Hecke transformations of conformal blocks in WZW theory. I. KZB equations for non-trivial bundles. http://arxiv.org/abs/1207.4386v1 [math.ph], 2012

  43. Levin A., Zotov A.: Integrable systems of interacting elliptic tops. Theor. Math. Phys. 146(1), 55–64 (2006)

    MathSciNet  Google Scholar 

  44. Looijenga E.: Root systems and elliptic curves. Invent. Math. 38, 17–32 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Li L.-C., Xu P.: Integrable spin Calogero-Moser systems. Commun. Math. Phys. 231, 257–286 (2002)

    Article  ADS  MATH  Google Scholar 

  46. Markman E.: Spectral curves and integrable systems. Comp. Math. 93, 255–290 (1994)

    MathSciNet  MATH  Google Scholar 

  47. Moser J.: Three integrable systems connected with isospectral deformations. Adv. Math. 16, 1–23 (1975)

    Article  ADS  Google Scholar 

  48. Levin, A.M., Olshanetsky, M.A., Smirnov, A.V., Zotov, A.V.: Characteristic Classes and Integrable Systems. General Construction, http://arxiv.org/abs/1006.0702v4 [math.ph], 2010

  49. Levin, A.M., Olshanetsky, M.A., Smirnov, A.V., Zotov, A.V.: Characteristic Classes and Integrable Systems for Simple Lie Groups, http://arxiv.org/abs/1007.4127v2 [math.ph], 2010

  50. Levin, A., Olshanetsky, M., Smirnov, A., Zotov, A.: Calogero-Moser systems for simple Lie groups and characteristic classes of bundles. J. Geom. Phys. 62, 1810–1850 (2012)

    Google Scholar 

  51. Mumford, D.: Tata Lectures on Theta I, II, Boston, MA: Birkhäuser Boston, 1983, 1984

  52. Narasimhan M.S., Seshadri C.S.: Stable and unitary vector bundles on a compact Riemann surface. Ann. of Math. 82, 540–64 (1965)

    Google Scholar 

  53. Nekrasov N.: Holomorphic Bundles and Many-Body Systems. Commun. Math. Phys. 180, 587–604 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. Olshanetsky M., Perelomov A.: Classical integrable finite-dimensional systems related to Lie algebras. Phys. Rep. 71, 313–400 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  55. Olshanetsky M., Perelomov A.: Explicit solution of the Calogero model in the classical case and geodesic flows on symmetric space of zero curvature. Lett. Nuovo Cim. 16, 333–339 (1976)

    Article  MathSciNet  Google Scholar 

  56. Onishchik, A., Vinberg, E.: Seminar on Lie groups and algebraic groups, Moscow (1988), (in Russian) English transl. Berlin-Heidelberg-New York: Springer-Verlag, 1990

  57. Reyman, A., Semenov-Tian-Schansky, M.: Lie algebras and Lax equations with spectral parameter on elliptic curve, (Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 150 (1986), Voprosy Kvant. Teor. Polya i Statist. Fiz. 6, 104–118, 221; translation in J. Soviet Math. 46(1), 1631–1640 (1989)

  58. Ramanathan A.: Stable principal bundles on a compact Riemann surface. Math. Ann. 213, 129–152 (1998)

    Article  MathSciNet  Google Scholar 

  59. Schiffmann O.: On classification of dynamical r-matrices. Math. Res. Lett. 5, 13–30 (1998)

    MathSciNet  MATH  Google Scholar 

  60. Schweigert C.: On moduli spaces of flat connections with non-simply connected structure group. Nucl. Phys. B 492, 743–755 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. Simpson C.: Harmonic bundles on Noncompact Curves. J. Am. Math. Soc. 3, 713–770 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  62. Sklyanin, E.: Dynamical r-matrices for the Elliptic Calogero-Moser Model. Alg. Anal. 6, 227–237 (1994); St.Petersburg Math. J. 6, 397–406 (1995)

  63. Weyl, A.: Elliptic functions according to Eisenstein and Kronecker. Berlin-Heidelberg-New York: Springer-Verlag, 1976

  64. Wojciechowski S.: An integrable marriage of the Euler equations with the Calogero-Moser systems. Phys. Lett. A 111, 101–103 (1985)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zotov.

Additional information

Communicated by N. A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levin, A., Olshanetsky, M., Smirnov, A. et al. Characteristic Classes and Hitchin Systems. General Construction. Commun. Math. Phys. 316, 1–44 (2012). https://doi.org/10.1007/s00220-012-1585-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1585-x

Keywords

Navigation