Abstract
Algebras of functions on quantum weighted projective spaces are introduced, and the structure of quantum weighted projective lines or quantum teardrops is described in detail. In particular the presentation of the coordinate algebra of the quantum teardrop in terms of generators and relations and classification of irreducible *-representations are derived. The algebras are then analysed from the point of view of Hopf-Galois theory or the theory of quantum principal bundles. Fredholm modules and associated traces are constructed. C*-algebras of continuous functions on quantum weighted projective lines are described and their K-groups computed.
Similar content being viewed by others
References
Auroux D., Katzarkov L., Orlov D.: Mirror symmetry for weighted projective planes and their noncommutative deformations. Ann. Math. 167, 867–943 (2008)
Brzeziński T.: On synthetic interpretation of quantum principal bundles. AJSE D - Mathematics 35(1D), 13–27 (2010)
Brzeziński T., Hajac P.M.: The Chern-Galois character. Comptes Rendus Math. (Acad. Sci. Paris Ser. I) 338, 113–116 (2004)
Brzeziński, T., Majid, S.: Quantum group gauge theory on quantum spaces. Commun. Math. Phys. 157, 591–638 (1993) Erratum 167, 235 (1995)
Connes A.: Noncommutative Geometry. Academic Press, New York (1994)
Da̧browski L., Grosse H., Hajac P.M.: Strong connections and Chern-Connes pairing in the Hopf-Galois theory. Commun. Math. Phys. 220, 301–331 (2001)
D’Andrea F., Landi G.: Bounded and unbounded Fredholm modules for quantum projective spaces. J. K-Theory 6, 231–240 (2010)
Hajac P.M.: Strong connections on quantum principal bundles. Commun. Math. Phys. 182, 579–617 (1996)
Hajac P.M., Krähmer U., Matthes R., Zieliński B.: Piecewise principal comodule algebras. J. Noncommut. Geom. 5, 591–614 (2011)
Hajac P.M., Majid S.: Projective module description of the q-monopole. Commun. Math. Phys. 206, 247–264 (1999)
Hajac P.M., Matthes R., Szymański W.: Graph C*-algebras and \({\mathbb{Z}_2}\)-quotients of quantum spheres. Rep. Math. Phys. 51, 215–224 (2003)
Hawkins E., Landi G.: Fredholm modules for quantum Euclidean spheres. J. Geom. Phys. 49, 272–293 (2004)
Hong J.H., Szymański W.: Quantum lens spaces and graph algebras. Pacific J. Math. 211, 249–263 (2003)
Masuda T., Nakagami Y., Watanabe J.: Noncommutative differential geometry on the quantum two sphere of Podleś. I. An algebraic viewpoint. K-Theory 5, 151–175 (1991)
Meyer U.: Projective quantum spaces. Lett. Math. Phys. 35, 91–97 (1995)
Schneider H.-J.: Principal homogeneous spaces for arbitrary Hopf algebras. Israel J. Math. 72, 167–195 (1990)
Sheu A.J.-L.: Quantization of the Poisson SU(2) and its Poisson homogeneous space – the 2-sphere. Commun. Math. Phys. 135, 21–232 (1991)
Vaksman, L.L., Soibel’man, Ya.S.: An algebra of functions on the quantum group SU(2). (Russian) Funkt. Anal. i Pril. 22, 1–14 (1988); translation in Funct. Anal. Appl. 22, 170–181 (1988)
Vaksman, L.L., Soibel’man, Ya.S.: Algebra of functions on the quantum group SU(n+1), and odd-dimensional quantum spheres. (Russian) Alg. i Anal. 2, 101–120 (1990); translation in Leningrad Math. J. 2, 1023–1042 (1991)
Thurston, W.P.: Three-dimensional geometry and topology. Edited by S. Levy. Princeton Mathematical Series, 35, Princeton, NJ: Princeton University Press, 1997
Van den Bergh, M.: Non-commutative crepant resolutions (with some corrections). http://arxiv.org/abs/math/0211064v2 (2002). Also in: The Legacy of Niels Henrik Abel, O.A. Laudal, R. Piene (eds.), Springer-Verlag, Berlin, 2004, pp. 749–770
Woronowicz S.L.: Twisted SU(2) group. An example of a noncommutative differential calculus. Publ. Res. Inst. Math. Sci. 23, 117–181 (1987)
Woronowicz S.L.: Compact matrix pseudogroups. Commun. Math. Phys. 111, 613–665 (1987)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by A. Connes
Rights and permissions
About this article
Cite this article
Brzeziński, T., Fairfax, S.A. Quantum Teardrops. Commun. Math. Phys. 316, 151–170 (2012). https://doi.org/10.1007/s00220-012-1580-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-012-1580-2