Skip to main content
Log in

Quantum Teardrops

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Algebras of functions on quantum weighted projective spaces are introduced, and the structure of quantum weighted projective lines or quantum teardrops is described in detail. In particular the presentation of the coordinate algebra of the quantum teardrop in terms of generators and relations and classification of irreducible *-representations are derived. The algebras are then analysed from the point of view of Hopf-Galois theory or the theory of quantum principal bundles. Fredholm modules and associated traces are constructed. C*-algebras of continuous functions on quantum weighted projective lines are described and their K-groups computed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auroux D., Katzarkov L., Orlov D.: Mirror symmetry for weighted projective planes and their noncommutative deformations. Ann. Math. 167, 867–943 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brzeziński T.: On synthetic interpretation of quantum principal bundles. AJSE D - Mathematics 35(1D), 13–27 (2010)

    Google Scholar 

  3. Brzeziński T., Hajac P.M.: The Chern-Galois character. Comptes Rendus Math. (Acad. Sci. Paris Ser. I) 338, 113–116 (2004)

    MATH  Google Scholar 

  4. Brzeziński, T., Majid, S.: Quantum group gauge theory on quantum spaces. Commun. Math. Phys. 157, 591–638 (1993) Erratum 167, 235 (1995)

    Google Scholar 

  5. Connes A.: Noncommutative Geometry. Academic Press, New York (1994)

    MATH  Google Scholar 

  6. Da̧browski L., Grosse H., Hajac P.M.: Strong connections and Chern-Connes pairing in the Hopf-Galois theory. Commun. Math. Phys. 220, 301–331 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  7. D’Andrea F., Landi G.: Bounded and unbounded Fredholm modules for quantum projective spaces. J. K-Theory 6, 231–240 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hajac P.M.: Strong connections on quantum principal bundles. Commun. Math. Phys. 182, 579–617 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Hajac P.M., Krähmer U., Matthes R., Zieliński B.: Piecewise principal comodule algebras. J. Noncommut. Geom. 5, 591–614 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hajac P.M., Majid S.: Projective module description of the q-monopole. Commun. Math. Phys. 206, 247–264 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Hajac P.M., Matthes R., Szymański W.: Graph C*-algebras and \({\mathbb{Z}_2}\)-quotients of quantum spheres. Rep. Math. Phys. 51, 215–224 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Hawkins E., Landi G.: Fredholm modules for quantum Euclidean spheres. J. Geom. Phys. 49, 272–293 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Hong J.H., Szymański W.: Quantum lens spaces and graph algebras. Pacific J. Math. 211, 249–263 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Masuda T., Nakagami Y., Watanabe J.: Noncommutative differential geometry on the quantum two sphere of Podleś. I. An algebraic viewpoint. K-Theory 5, 151–175 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Meyer U.: Projective quantum spaces. Lett. Math. Phys. 35, 91–97 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Schneider H.-J.: Principal homogeneous spaces for arbitrary Hopf algebras. Israel J. Math. 72, 167–195 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sheu A.J.-L.: Quantization of the Poisson SU(2) and its Poisson homogeneous space – the 2-sphere. Commun. Math. Phys. 135, 21–232 (1991)

    Article  MathSciNet  Google Scholar 

  18. Vaksman, L.L., Soibel’man, Ya.S.: An algebra of functions on the quantum group SU(2). (Russian) Funkt. Anal. i Pril. 22, 1–14 (1988); translation in Funct. Anal. Appl. 22, 170–181 (1988)

  19. Vaksman, L.L., Soibel’man, Ya.S.: Algebra of functions on the quantum group SU(n+1), and odd-dimensional quantum spheres. (Russian) Alg. i Anal. 2, 101–120 (1990); translation in Leningrad Math. J. 2, 1023–1042 (1991)

  20. Thurston, W.P.: Three-dimensional geometry and topology. Edited by S. Levy. Princeton Mathematical Series, 35, Princeton, NJ: Princeton University Press, 1997

  21. Van den Bergh, M.: Non-commutative crepant resolutions (with some corrections). http://arxiv.org/abs/math/0211064v2 (2002). Also in: The Legacy of Niels Henrik Abel, O.A. Laudal, R. Piene (eds.), Springer-Verlag, Berlin, 2004, pp. 749–770

  22. Woronowicz S.L.: Twisted SU(2) group. An example of a noncommutative differential calculus. Publ. Res. Inst. Math. Sci. 23, 117–181 (1987)

    MathSciNet  MATH  Google Scholar 

  23. Woronowicz S.L.: Compact matrix pseudogroups. Commun. Math. Phys. 111, 613–665 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Brzeziński.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brzeziński, T., Fairfax, S.A. Quantum Teardrops. Commun. Math. Phys. 316, 151–170 (2012). https://doi.org/10.1007/s00220-012-1580-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1580-2

Keywords

Navigation