Communications in Mathematical Physics

, Volume 316, Issue 2, pp 289–306 | Cite as

Cluster Expansion in the Canonical Ensemble



We consider a system of particles confined in a box \({\Lambda \subset \mathbb{R}^d}\) interacting via a tempered and stable pair potential. We prove the validity of the cluster expansion for the canonical partition function in the high temperature - low density regime. The convergence is uniform in the volume and in the thermodynamic limit it reproduces Mayer’s virial expansion providing an alternative and more direct derivation which avoids the deep combinatorial issues present in the original proof.


Periodic Boundary Condition Connected Graph Hard Sphere Thermodynamic Limit Canonical Ensemble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bovier A., Zahradník M.: A simple inductive approach to the problem of convergence of cluster expansion in polymer models. J. Stat. Phys. 100, 765–777 (2000)MATHCrossRefGoogle Scholar
  2. 2.
    Dobrushin, R.L.: Estimates of Semiinvariants for the Ising Model at Low Temperatures. In: Topics in Statistical Physics, AMS Translation Series 2, Vol. 177, Providence, RI: Amer. Math. Soc., Advances in the Mathematical Sciences 32, 1995, pp. 59–81Google Scholar
  3. 3.
    Fernandez R., Procacci A.: Cluster expansion for abstract polymer models. New bounds from an old approach. Commun. Math. Phys. 274, 123–140 (2007)MathSciNetADSMATHGoogle Scholar
  4. 4.
    Fernandez R., Procacci A., Scoppola B.: The Analyticity Region of the Hard Sphere Gas. Improved Bounds. J. Stat. Phys. 128, 1139–1143 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Fischer M., Lebowitz J.: Asymptotic Free Energy of a System with Periodic Boundary Conditions. Commun. Math. Phys. 19, 251–272 (1970)ADSCrossRefGoogle Scholar
  6. 6.
    Gruber C., Kunz H.: General properties of polymer systems. Commun. Math. Phys. 22, 133–161 (1971)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Kotecký R., Preiss D.: Cluster expansion for abstract polymer models. Commun. Math. Phys. 103, 491–498 (1986)ADSMATHCrossRefGoogle Scholar
  8. 8.
    Lebowitz J.L., Mazel A., Presutti E.: Liquid–Vapor Phase Transitions for Systems with Finite–Range Interactions. J. Stat. Phys. 94, 955–1025 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Lebowitz J.L., Penrose O.: Convergence of virial expansions. J. Math. Phys. 5, 841–847 (1964)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Lebowitz J. L., Penrose O.: Rigorous Treatment of the Van Der Waals–Maxwell Theory of the Liquid–Vapor Transition. J. Math. Phys. 7, 98–113 (1966)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Leroux, P.: Enumerative problems inspired by Mayer’s theory of cluster integrals. Electron. J. Combin. 11 (1) (2004)Google Scholar
  12. 12.
    Mayer, J.E.: Theory of Real Gases. Handbuch der Physik, Vol. 12, Berlin: Springer-Verlag, 1958Google Scholar
  13. 13.
    Mayer, J.E., Mayer, M. G.: Statistical Mechanics. New York: John Wiley and Sons, 1940Google Scholar
  14. 14.
    Nardi F. R., Olivieri E., Zahradnik M.: On the Ising model with strongly anisotropic external field. J. Stat. Phys. 97, 87–145 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    Poghosyan S., Ueltschi D.: Abstract cluster expansion with applications to statistical mechanical systems. J. Math. Phys. 50, 053509 (2009)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Ruelle, D.: Statistical Mechanics: rigorous results. Singapore: World Scientific/Imperial College Press, 1969Google Scholar
  17. 17.
    Scott A., Sokal A.: The Repulsive Lattice Gas, the Independent-Set Polynomial, and the Lovász Local Lemma. J. Stat. Phys. 118, 1151–1261 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Uhlenbeck, G.E., Ford, G.W.: Lectures in Statistical Mechanics. Providence, RI: Amer. math. Soc., 1963Google Scholar
  19. 19.
    Ursell H.D.: The evaluation of Gibbs’ phase-integral for imperfect gases. Proc. Camb. Phil. Soc. 23, 685–697 (1927)MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di Roma 3RomeItaly
  2. 2.Department of Applied MathematicsUniversity of CreteHeraklion CreteGreece

Personalised recommendations