Skip to main content
Log in

Twisted Differential String and Fivebrane Structures

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In the background effective field theory of heterotic string theory, the Green-Schwarz anomaly cancellation mechanism plays a key role. Here we reinterpret it and its magnetic dual version in terms of, differential twisted String- and differential twisted Fivebrane-structures that generalize the notion of Spin-structures and Spin-lifting gerbes and their differential refinement to smooth Spin-connections. We show that all these structures can be encoded in terms of nonabelian cohomology, twisted nonabelian cohomology, and differential twisted nonabelian cohomology, extending the differential generalized abelian cohomology as developed by Hopkins and Singer and shown by Freed to formalize the global description of anomaly cancellation problems in higher gauge theories arising in string theory. We demonstrate that the Green-Schwarz mechanism for the H 3-field, as well as its magnetic dual version for the H 7-field define cocycles in differential twisted nonabelian cohomology that may be called, respectively, differential twisted Spin(n)-, String(n)- and Fivebrane(n)- structures on target space, where the twist in each case is provided by the obstruction to lifting the classifying map of the gauge bundle through a higher connected cover of U(n) or O(n). We show that the twisted Bianchi identities in string theory can be captured by the (nonabelian) L -algebra valued differential form data provided by the differential refinements of these twisted cocycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abad, C., Crainic, M.: Representations up to homotopy of Lie algebroids. http://arxiv.org/abs/0901.0319v2 [math.DG], 2011

  2. Aschieri P., Jurčo B.: Gerbes, M5-brane anomalies and E 8 gauge theory. J. High Energy Phys. 0410, 068 (2004)

    Article  ADS  Google Scholar 

  3. Baas, N. A., Bökstedt, M., Kro, T. A.: Two-categorical bundles and their classifying spaces. http://arxiv.org/abs/math/0612549v2 [math.AT], 2008

  4. Baez J., Crans A., Schreiber U., Stevenson D.: From loop groups to 2-groups. Homology, Homotopy Appl. 9(2), 101–135 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Baez, J., Schreiber, U.: Higher gauge theory. In: Categories in Algebra, Geometry and Mathematical Physics, Contemp. Math., 431, Providence, RI: Amer. Math. Soc., pp. 7–30

  6. Baez, J., Stevenson, D.: The classifying space of a topological 2-group. http://arxiv.org/abs/0801.3843v2 [math.AT], 2009

  7. Behrend K., Xu P.: Differentiable Stacks and Gerbes. J. Symplectic Geom. 9, 285–341 (2001)

    MathSciNet  Google Scholar 

  8. Block, J.: Duality and equivalence of module categories in noncommutative geometry I. http://arxiv.org/abs/math/0509284v2 [math.QA], 2009

  9. Bott R.: The space of loops on a Lie group. Michigan Math. J. 5, 35–61 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bouwknegt P., Carey A.L., Mathai V., Murray M.K., Stevenson D.: Twisted K-theory and K-theory of bundle gerbes. Commun. Math. Phys. 228, 17–49 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Bouwknegt P., Mathai V.: D-branes, B-fields and twisted K-theory. J. High Energy Phys. 03, 007 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  12. Brodzki J., Mathai V., Rosenberg J., Szabo R.J.: D-branes, RR-fields and duality on noncommutative manifolds. Commun. Math. Phys. 277(3), 643–706 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Bunke, U.: String structures and trivialisations of a Pfaffian line bundle. http://arxiv.org/abs/0909.0846v3 [math.KT], 2011

  14. Chamseddine A.H.: Interacting supergravity in ten-dimensions: the role of the six-index gauge field. Phys. Rev. D 24, 3065 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  15. Chamseddine A.H.: A family of dual N = 2 supergravity actions in ten-dimensions. Phys. Lett. B 367, 134–139 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  16. Diaconescu, E., Freed, D.S., Moore, G.: The M-theory 3-form and E 8 gauge theory. In: Elliptic cohomology, London Math. Soc. Lecture Note Ser., 342, Cambridge: Cambridge Univ. Press 2007, pp. 44–88

  17. Diaconescu E., Moore G., Witten E.: E 8 gauge theory, and a derivation of K-theory from M-theory. Adv. Theor. Math. Phys. 6, 1031 (2003)

    MathSciNet  Google Scholar 

  18. Dixon J.A., Duff M.J., Plefka J.C.: Putting string/fivebrane duality to the test. Phys. Rev. Lett. 69, 3009–3012 (1992)

    Article  ADS  Google Scholar 

  19. Duff M.J., Liu J.T., Minasian R.: Eleven-dimensional origin of string-string duality: A one loop test. Nucl. Phys. B 452, 261–282 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Evslin J., Sati H.: Can D-branes wrap nonrepresentable cycles?. J. High Energy Phys. 0610, 050 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  21. Fiorenza, D., Schreiber, U., Stasheff, J.: Čech cocycles for differential characteristic classes – an ∞-Lie theoretic construction, http://arxiv.org/abs/1011.4735v2 [math.AT], 2011

  22. Freed, D.S.: Dirac charge quantization and generalized differential cohomology. Surv. Differ. Geom., VII, Somerville, MA: Int. Press 2000, http://arxiv.org/abs/hep-th/0011220v2, 2001, pp. 129–194

  23. Freed D., Harvey J.A., Minasian R., Moore G.: Gravitational anomaly cancellation for M-theory fivebranes. Adv. Theor. Math. Phys. 2, 601–618 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Freed D.S., Witten E.: Anomalies in string theory with D-Branes. Asian J. Math. 3, 819 (1999)

    MathSciNet  MATH  Google Scholar 

  25. Gates S.J. Jr, Nishino H.: New D = 10, N = 1 supergravity coupled to Yang-Mills supermultiplet and anomaly cancellations. Phys. Lett. B 157, 157 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  26. Green M.B., Schwarz J. H.: Anomaly cancellation in supersymmetric D = 10 gauge theory and superstring theory. Phys. Lett. B 149, 117 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  27. Henriques A.: Integrating L -algebras. Compos. Math. 144(4), 1017–1045 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hopkins M.J., Singer I. M.: Quadratic functions in geometry, topology, and M-theory. J. Diff. Geom. 70, 329–452 (2005)

    MATH  Google Scholar 

  29. Horava P., Witten E.: Eleven-dimensional supergravity on a manifold with boundary. Nucl. Phys. B 475, 94–114 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Isham C.J., Pope C.N.: Nowhere vanishing spinors and topological obstructions to the equivalence of the NSR and GS superstrings. Class. Quant. Grav. 5, 257 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Isham C.J., Pope C.N., Warner N.P.: Nowhere vanishing spinors and triality rotations in eight manifolds. Class. Quant. Grav. 5, 1297 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Kapustin A.: D-branes in a topologically nontrivial B-field. Adv. Theor. Math. Phys. 4, 127 (2000)

    MathSciNet  MATH  Google Scholar 

  33. Killingback T.P.: World-sheet anomalies and loop geometry. Nucl. Phys. B 288, 578 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  34. Kramer L., Stolz S.: A diffeomorphism classification of manifolds which are like projective planes. J. Differential Geom. 77(2), 177–188 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Lada T., Markl M.: Strongly homotopy Lie algebras. Comm. Algebra 23(6), 2147–2161 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lechner K., Tonin M.: World volume and target space anomalies in the D = 10 superfivebrane sigma model. Nucl. Phys. B 475, 545–561 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Lurie, J.: Higher topos theory. Annals of Mathematics Studies, No. 170, Princeton, NJ: Princeton University Press, 2009

  38. Mackenzie, K.C.H.: General theory of Lie groupoids and Lie algebroids. Cambridge: Cambridge University Press, 2005

  39. Nikolaus, T., Sachse, C., Wockel, C.: A smooth model for the string 2-group. http://arxiv.org/abs/1104.4288v3 [math.AT], 2011

  40. Nishino H., Gates S. J. Jr: Dual versions of higher dimensional supergravities and anomaly cancellations in lower dimensions. Nucl. Phys. B 268, 532–542 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  41. Redden C.: String structures and canonical 3-forms. Pacif. J Math. 249(2), 447–484 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Salam A., Sezgin E.: Anomaly freedom in chiral supergravities. Phys. Scripta 32, 283 (1985)

    Article  ADS  Google Scholar 

  43. Sati H.: Geometric and topological structures related to M-branes. Proc. Symp. Pure Math. 81, 181–236 (2010)

    MathSciNet  Google Scholar 

  44. Sati H.: Geometric and topological structures related to M-branes II: Twisted String and Stringc structures. J. Australian Math. Soc. 90, 93–108 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sati H.: Twisted topological structures related to M-branes. Int. J. Geom. Meth. Mod. Phys. 8, 1097–1116 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sati, H., Schreiber, U., Stasheff, J.: L -connections and applications to String- and Chern-Simons n-transport. In: Recent Developments in QFT, eds. B. Fauser et al., Basel: Birkhäuser, 2008

  47. Sati H., Schreiber U., Stasheff J.: Fivebrane structures. Rev. Math. Phys. 21, 1–44 (2009)

    Article  MathSciNet  Google Scholar 

  48. Schommer-Pries C.: A finite-dimensional model for the String 2-group. Geom. Top. 15, 609–676 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Schreiber, U.: Differential cohomology in a cohesive topos. Habilitation, Hamburg 2011 http://ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos

  50. Schreiber, U.: On∞-Lie theory. [http://www.math.uni-hamburg.de/home/schreiber/action.pdf]

  51. Schreiber, Schreiber, Schreiber, Schreiber : Parallel transport and functors. J.Homotophy Rel. Struct. 4, 187–244 (2009)

    MATH  Google Scholar 

  52. Schreiber U., Waldorf K.: Smooth functors vs. differential forms. Homol.Homot. Appl. 13(1), 143–203 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  53. Schreiber, U., Waldorf, K.: Connections on nonabelian gerbes and their holonomy. http://arxiv.org/abs/0808.1923 [math.DG]

  54. Singer W. M.: Connective fiberings over BU and U. Topology 7, 271–303 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  55. Stasheff J.: Constrained Poisson algebras and strong homotopy representations. Bull. Amer. Math. Soc. (N.S.) 19(1), 287–290 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  56. Stolz, S., Teichner, P.: What is an elliptic object? In: Topology, geometry and quantum field theory, Cambridge: Cambridge Univ. Press, 2004, pp. 247–343

  57. Stong R.: Determination of H* (BO(k, . . . ,∞), Z 2) and H * (BU(k, . . . ,∞), Z 2). Trans. Amer. Math. Soc. 107, 526–544 (1963)

    MathSciNet  MATH  Google Scholar 

  58. Toën, B.: Notes on non-abelian cohomology. Lecture in MSRI, January 2002, [http://www.math.univ-toulouse.fr/~toen/msri2002.pdf]

  59. Vafa C., Witten E.: A one-loop test of string duality. Nucl. Phys. B 447, 261–270 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. Waldorf, K.: String connections and Chern-Simons theory. http://arxiv.org/abs/0906.0117v2 [math.DG], 2012

  61. Wang B.-L.: Geometric cycles, index theory and twisted K-homology. J. Noncommut. Geom. 2(4), 497–552 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  62. Witt, F.: Special metric structures and closed forms. DPhil Thesis University of Oxford, 2004

  63. Witten E.: On flux quantization in M-theory and the effective action. J. Geom. Phys. 22, 1–13 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. Witten E.: Five-brane effective action in M-theory. J. Geom. Phys. 22, 103–133 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. Witten E.: D-Branes and K-Theory. J. High Energy Phys. 12, 019 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  66. Witten E.: Duality relations among topological effects in string theory. J. High Energy Phys. 0005, 031 (2000)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisham Sati.

Additional information

Communicated by N. A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sati, H., Schreiber, U. & Stasheff, J. Twisted Differential String and Fivebrane Structures. Commun. Math. Phys. 315, 169–213 (2012). https://doi.org/10.1007/s00220-012-1510-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1510-3

Keywords

Navigation