Abstract
In this article we prove that there exists a Dixmier map for nilpotent super Lie algebras. In other words, if we denote by \({\mathrm{Prim}(\mathcal{U}(\mathfrak{g}))}\) the set of (graded) primitive ideals of the enveloping algebra \({\mathcal{U}(\mathfrak{g})}\) of a nilpotent Lie superalgebra \({\mathfrak{g}}\) and \({\mathcal{A}d_{0}}\) the adjoint group of \({\mathfrak{g}_{0}}\), we prove that the usual Dixmier map for nilpotent Lie algebras can be naturally extended to the context of nilpotent super Lie algebras, i.e. there exists a bijective map
defined by sending the equivalence class [λ] of a functional λ to a primitive ideal I(λ) of \({\mathcal{U}(\mathfrak{g})}\), and which coincides with the Dixmier map in the case of nilpotent Lie algebras. Moreover, the construction of the previous map is explicit, and more or less parallel to the one for Lie algebras, a major difference with a previous approach (cf. [18]). One key fact in the construction is the existence of polarizations for super Lie algebras, generalizing the concept defined for Lie algebras. As a corollary of the previous description, we obtain the isomorphism \({\mathcal{U}(\mathfrak{g})/I(\lambda) \simeq {\rm Cliff}_{q}(k) \otimes A_{p}(k)}\), where \({(p,q) = ({\rm dim}(\mathfrak{g}_{0}/\mathfrak{g}_{0}^{\lambda})/2,{\rm dim}(\mathfrak{g}_{1}/\mathfrak{g}_{1}^{\lambda}))}\), we get a direct construction of the maximal ideals of the underlying algebra of \({\mathcal{U}(\mathfrak{g})}\) and also some properties of the stabilizers of the primitive ideals of \({\mathcal{U}(\mathfrak{g})}\).
This is a preview of subscription content, access via your institution.
References
Anderson, F.W., Fuller, K.R.: Rings and categories of modules, 2nd ed., Graduate Texts in Mathematics, Vol. 13, New York: Springer-Verlag, 1992
Behr E.J.: Enveloping algebras of Lie superalgebras. Pacific J. Math. 130(1), 9–25 (1987)
Bell A.D., Musson I.M.: Primitive factors of enveloping algebras of nilpotent Lie superalgebras. J. London Math. Soc. (2) 42(3), 401–408 (1990)
Cohen M., Montgomery S.: Group-graded rings, smash products, and group actions. Trans. Amer. Math. Soc. 282(1), 237–258 (1984)
Connes A., Dubois-Violette M.: Yang-Mills algebra. Lett. Math. Phys. 61(2), 149–158 (2002)
Deligne, P., Morgan, J.W.: Notes on supersymmetry (following Joseph Bernstein), (Princeton, NJ, 1996/1997), Providence, RI: Amer. Math. Soc., 1999, pp. 41–97
Dixmier J.: Représentations irréductibles des algèbres de Lie nilpotentes. An. Acad. Brasil. Ci. 35, 491–519 (1963) (French)
Dixmier, J.: Enveloping algebras. Graduate Studies in Mathematics, Vol. 11, Providence, RI: Amer. Math. Soc., 1996, revised reprint of the 1977 translation
Elduque A., Laliena J., Sacristán S.: Maximal subalgebras of associative superalgebras. J. Algebra 275(1), 40–58 (2004)
Farb, B., Dennis, R.K.: Noncommutative algebra. Graduate Texts in Mathematics, Vol. 144, New York: Springer-Verlag, 1993
Goodearl K.R.: Prime ideals in skew polynomial rings and quantized Weyl algebras. J. Algebra 150(2), 324–377 (1992)
Grothendieck, A.: Revêtements étales et groupe fondamental. Fasc. I: Exposés 1 à 5. Séminaire de Géométrie Algébrique, Vol. 1960/61, Paris: Institut des Hautes Études Scientifiques, 1963
Herscovich E., Solotar A.: Representation theory of Yang-Mills algebras. Ann. of Math. (2) 173(2), 1043–1080 (2011)
Kac V.G.: Lie superalgebras. Adv. in Math. 26(1), 8–96 (1977)
Karoubi, M.: K-theory. Grundlehren der Mathematischen Wissenshcaften, Vol. 226, Berlin, Heidel-berg-New York: Springer-Verlag, 1978
Lam, T.Y.: The algebraic theory of quadratic forms. Reading, MA: Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, 1980, revised second printing; Mathematics Lecture Note Series
Letzter E.: Primitive ideals in finite extensions of Noetherian rings. J. London Math. Soc. (2) 39(3), 427–435 (1989)
Letzter, E.S.: Prime and primitive ideals in enveloping algebras of solvable Lie superalgebras. In: Abelian groups and noncommutative rings, Contemp. Math., Vol. 130, Providence, RI: Amer. Math. Soc., 1992, pp. 237–255
Năstăsescu, C., Van Oystaeyen, F.: Methods of graded rings. Lecture Notes in Mathematics, Vol. 1836, Berlin: Springer-Verlag, 2004
Quillen D.: On the endomorphism ring of a simple module over an enveloping algebra. Proc. Amer. Math. Soc. 21, 171–172 (1969)
Racine M.L.: Primitive superalgebras with superinvolution. J. Algebra 206(2), 588–614 (1998)
Ross L.E.: Representations of graded Lie algebras. Trans. Amer. Math. Soc. 120, 17–23 (1965)
Scheunert, M.: The theory of Lie superalgebras: An introduction. Lecture Notes in Mathematics, Vol. 716, Berlin: Springer, 1979
Sergeev A.: Irreducible representations of solvable Lie superalgebras. Represent. Theory 3, 435–443 (1999) (electronic)
Tauvel, P., Yu, R.W.T.: Lie algebras and algebraic groups. Springer Monographs in Mathematics, Berlin: Springer-Verlag, 2005
Varadarajan, V.S.: Supersymmetry for mathematicians: an introduction. Courant Lecture Notes in Mathematics, Vol. 11, New York: New York University Courant Institute of Mathematical Sciences, 2004
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by A. Connes
The author is an Alexander von Humboldt fellow.
Rights and permissions
About this article
Cite this article
Herscovich, E. The Dixmier Map for Nilpotent Super Lie Algebras. Commun. Math. Phys. 313, 295–328 (2012). https://doi.org/10.1007/s00220-012-1505-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-012-1505-0
Keywords
- Maximal Ideal
- Symmetric Bilinear Form
- Homogeneous Element
- Isotropic Subspace
- Primitive Ideal