Abstract
We prove that the maximum number N c of non-relativistic electrons that a nucleus of charge Z can bind is less than 1.22Z + 3Z 1/3. This improves Lieb’s upper bound N c < 2Z + 1 Lieb (Phys Rev A 29:3018–3028, 1984) when Z ≥ 6. Our method also applies to non-relativistic atoms in magnetic field and to pseudo-relativistic atoms. We show that in these cases, under appropriate conditions, \({\limsup_{Z \to \infty}N_c/Z \le 1.22}\).
Similar content being viewed by others
References
Baumgartner B.: On Thomas-Fermi-von Weizsäcker and Hartree energies as functions of the degree of ionization. J. Phys. A: Math. Gen. 17, 1593–1602 (1984)
Benguria R., Lieb E.H.: Proof of stability of highly negative ions in the absence of the Pauli principle. Phys. Rev. Lett. 50, 1771–1774 (1983)
Benguria R., Lieb E.H.: The most negative ion in the Thomas-Fermi-von Weizsäcker theory of atoms and molecules. J. Phys B 18, 1045–1059 (1985)
Dall’Acqua A., Solovej J.P.: Excess charge for pseudo-relativistic atoms in Hartree-Fock theory. Documenta Mathematica 115, 285–345 (2010)
Dall’Acqua, A., Østergaard Sørensen, T., Stockmeyer, E.: Private communication
Dolbeault J., Laptev A., Loss M.: Lieb-Thirring inequalities with improved constants. J. Eur. Math. Soc. 10, 1121–1126 (2008)
Fefferman C., Seco L.A.: Asymptotic neutrality of large ions. Commun. Math. Phys. 128, 109–130 (1990)
Lieb E.H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603–641 (1981)
Lieb E.H.: The stability of matter. Rev. Mod. Phys. 48, 553–569 (1976)
Lieb E.H.: Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A 29, 3018–3028 (1984)
Lieb E.H., Sigal I.M., Simon B., Thirring W.: Asymptotic neutrality of large-Z ions. Commun. Math. Phys. 116, 635–644 (1988)
Lieb, E.H., Seiringer, R.: The stability of matter in quantum mechanics. Cambridge: Cambridge University Press, 2009
Lieb E.H., Solovej J.P., Yngvason J.: Asymptotics of heavy atoms in high magnetic fields: I. Lowest Landau band regions. Commun. Pure Appl. Math. 47, 513–591 (1994)
Lieb E.H., Solovej J.P., Yngvason J.: Asymptotics of heavy atoms in high magnetic fields: II. Semiclassical regions. Commun. Math. Phys. 161, 77–124 (1994)
Lieb E.H., Thirring W.: Bound for the Kinetic Energy of Fermions which Proves the Stability of Matter. Phys. Rev. Lett. 35, 687–689 (1975)
Leinfelder H., Simader C.G.: Schrödinger operators with singular magnetic vector potentials. Math. Z. 176, 1–19 (1981)
Messer J., Spohn H.: Statistical mechanics of the isothermal Lane-Emden equation. J. Stat. Phys. 29(3), 561–578 (1982)
Ruskai M.B.: Absence of discrete spectrum in highly negative ions, II. Extension to Fermions. Commun. Math. Phys. 82, 325–327 (1982)
Seco L.A., Sigal I.M., Solovej J.P.: Bound on the ionization energy of large atoms. Commun. Math. Phys. 131, 307–315 (1990)
Seiringer R.: On the maximal ionization of atoms in strong magnetic fields. J. Phys. A: Math. Gen. 34, 1943–1948 (2001)
Sigal I.M.: Geometric methods in the quantum many-body problem. Nonexistence of very negative ions. Commun. Math. Phys. 85, 309–324 (1982)
Sigal I.M.: How many electrons can a nucleus bind?. Ann. Phys. 157, 307–320 (1984)
Solovej J.P.: Asymptotics for bosonic atoms. Lett. Math. Phys. 20, 165–172 (1990)
Solovej J.P.: Proof of the ionization conjecture in a reduced Hartree-Fock model. Invent. Math. 104, 291–311 (1991)
Solovej J.P.: The ionization conjecture in Hartree-Fock theory. Ann. of Math. 158, 509–576 (2003)
Østergaard Sørensen T.: The large-Z behavior of pseudo-relativistic atoms. J. Math. Phys. 46(5), 052307 (2005)
Teschl, G.: Mathematical methods in quantum mechanics, with applications to Schrödinger operators. Graduate Studies in Mathematics, Vol. 99. Providence, RI: Amer. Math. Soc., 2009
Zhislin G.: Discussion of the spectrum of Schrödinger operator for system of many particles. Trudy. Mosk. Mat. Obšč. 9, 81 (1960)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by I. M. Sigal
Rights and permissions
About this article
Cite this article
Nam, P.T. New Bounds on the Maximum Ionization of Atoms. Commun. Math. Phys. 312, 427–445 (2012). https://doi.org/10.1007/s00220-012-1479-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-012-1479-y