Skip to main content
Log in

New Bounds on the Maximum Ionization of Atoms

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that the maximum number N c of non-relativistic electrons that a nucleus of charge Z can bind is less than 1.22Z + 3Z 1/3. This improves Lieb’s upper bound N c  < 2Z + 1 Lieb (Phys Rev A 29:3018–3028, 1984) when Z ≥ 6. Our method also applies to non-relativistic atoms in magnetic field and to pseudo-relativistic atoms. We show that in these cases, under appropriate conditions, \({\limsup_{Z \to \infty}N_c/Z \le 1.22}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baumgartner B.: On Thomas-Fermi-von Weizsäcker and Hartree energies as functions of the degree of ionization. J. Phys. A: Math. Gen. 17, 1593–1602 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Benguria R., Lieb E.H.: Proof of stability of highly negative ions in the absence of the Pauli principle. Phys. Rev. Lett. 50, 1771–1774 (1983)

    Article  ADS  Google Scholar 

  3. Benguria R., Lieb E.H.: The most negative ion in the Thomas-Fermi-von Weizsäcker theory of atoms and molecules. J. Phys B 18, 1045–1059 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  4. Dall’Acqua A., Solovej J.P.: Excess charge for pseudo-relativistic atoms in Hartree-Fock theory. Documenta Mathematica 115, 285–345 (2010)

    MathSciNet  Google Scholar 

  5. Dall’Acqua, A., Østergaard Sørensen, T., Stockmeyer, E.: Private communication

  6. Dolbeault J., Laptev A., Loss M.: Lieb-Thirring inequalities with improved constants. J. Eur. Math. Soc. 10, 1121–1126 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fefferman C., Seco L.A.: Asymptotic neutrality of large ions. Commun. Math. Phys. 128, 109–130 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Lieb E.H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603–641 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Lieb E.H.: The stability of matter. Rev. Mod. Phys. 48, 553–569 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  10. Lieb E.H.: Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A 29, 3018–3028 (1984)

    Article  ADS  Google Scholar 

  11. Lieb E.H., Sigal I.M., Simon B., Thirring W.: Asymptotic neutrality of large-Z ions. Commun. Math. Phys. 116, 635–644 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  12. Lieb, E.H., Seiringer, R.: The stability of matter in quantum mechanics. Cambridge: Cambridge University Press, 2009

  13. Lieb E.H., Solovej J.P., Yngvason J.: Asymptotics of heavy atoms in high magnetic fields: I. Lowest Landau band regions. Commun. Pure Appl. Math. 47, 513–591 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lieb E.H., Solovej J.P., Yngvason J.: Asymptotics of heavy atoms in high magnetic fields: II. Semiclassical regions. Commun. Math. Phys. 161, 77–124 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Lieb E.H., Thirring W.: Bound for the Kinetic Energy of Fermions which Proves the Stability of Matter. Phys. Rev. Lett. 35, 687–689 (1975)

    Article  ADS  Google Scholar 

  16. Leinfelder H., Simader C.G.: Schrödinger operators with singular magnetic vector potentials. Math. Z. 176, 1–19 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Messer J., Spohn H.: Statistical mechanics of the isothermal Lane-Emden equation. J. Stat. Phys. 29(3), 561–578 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  18. Ruskai M.B.: Absence of discrete spectrum in highly negative ions, II. Extension to Fermions. Commun. Math. Phys. 82, 325–327 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  19. Seco L.A., Sigal I.M., Solovej J.P.: Bound on the ionization energy of large atoms. Commun. Math. Phys. 131, 307–315 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Seiringer R.: On the maximal ionization of atoms in strong magnetic fields. J. Phys. A: Math. Gen. 34, 1943–1948 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Sigal I.M.: Geometric methods in the quantum many-body problem. Nonexistence of very negative ions. Commun. Math. Phys. 85, 309–324 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Sigal I.M.: How many electrons can a nucleus bind?. Ann. Phys. 157, 307–320 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  23. Solovej J.P.: Asymptotics for bosonic atoms. Lett. Math. Phys. 20, 165–172 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Solovej J.P.: Proof of the ionization conjecture in a reduced Hartree-Fock model. Invent. Math. 104, 291–311 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Solovej J.P.: The ionization conjecture in Hartree-Fock theory. Ann. of Math. 158, 509–576 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Østergaard Sørensen T.: The large-Z behavior of pseudo-relativistic atoms. J. Math. Phys. 46(5), 052307 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  27. Teschl, G.: Mathematical methods in quantum mechanics, with applications to Schrödinger operators. Graduate Studies in Mathematics, Vol. 99. Providence, RI: Amer. Math. Soc., 2009

  28. Zhislin G.: Discussion of the spectrum of Schrödinger operator for system of many particles. Trudy. Mosk. Mat. Obšč. 9, 81 (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phan Thành Nam.

Additional information

Communicated by I. M. Sigal

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nam, P.T. New Bounds on the Maximum Ionization of Atoms. Commun. Math. Phys. 312, 427–445 (2012). https://doi.org/10.1007/s00220-012-1479-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1479-y

Keywords

Navigation