Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Communications in Mathematical Physics
  3. Article

Infraparticles with Superselected Direction of Motion in Two-Dimensional Conformal Field Theory

  • Open access
  • Published: 08 March 2012
  • volume 311, pages 457–490 (2012)
Download PDF

You have full access to this open access article

Communications in Mathematical Physics Aims and scope Submit manuscript
Infraparticles with Superselected Direction of Motion in Two-Dimensional Conformal Field Theory
Download PDF
  • Wojciech Dybalski1 &
  • Yoh Tanimoto2 
  • 464 Accesses

  • 5 Citations

  • 1 Altmetric

  • Explore all metrics

Cite this article

Abstract

Particle aspects of two-dimensional conformal field theories are investigated, using methods from algebraic quantum field theory. The results include asymptotic completeness in terms of (counterparts of) Wigner particles in any vacuum representation and the existence of (counterparts of) infraparticles in any charged irreducible product representation of a given chiral conformal field theory. Moreover, an interesting interplay between the infraparticle’s direction of motion and the superselection structure is demonstrated in a large class of examples. This phenomenon resembles the electron’s momentum superselection expected in quantum electrodynamics.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Araki H.: Mathematical theory of quantum fields. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  2. Araki H., Haag R.: Collision cross sections in terms of local observables. Commun. Math. Phys. 4, 77–91 (1967)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bischoff M., Meise D., Rehren K.-H., Wagner I.: Conformal quantum field theory in various dimensions. Bulg. J. Phys. 36(3), 170–185 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Borchers H.-J., Buchholz D.: The energy-momentum spectrum in local field theories with broken Lorentz-symmetry. Commun. Math. Phys. 97, 169–185 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Buchholz D.: Collision theory for waves in two dimensions and a characterization of models with trivial S-matrix. Commun. Math. Phys. 45, 1–8 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  6. Buchholz D.: Collision theory for massless bosons. Commun. Math. Phys. 52, 147–173 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  7. Buchholz D.: The physical state space of quantum electrodynamics. Commun. Math. Phys. 85, 49–71 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Buchholz D.: Gauss’ law and the infraparticle problem. Phys. Lett. B 174, 331–334 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  9. Buchholz, D.: Particles, infraparticles and the problem of asymptotic completeness. In: VIIIth International Congress on Mathematical Physics. Marseille 1986. Singapore: World Scientific, 1987

  10. Buchholz D.: Harmonic analysis of local operators. Commun. Math. Phys. 129, 631–641 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Buchholz, D.: On the manifestations of particles. In: Mathematical Physics Towards the 21st Century. Proceedings Beer-Sheva 1993, Sen, R.N., Gersten, A., eds. Beer-Sheva: Ben-Gurion University of the Negev Press, 1994, pp.177–202

  12. Buchholz D.: Quarks, gluons, colour: facts or fiction?. Nucl. Phys. B 469, 333–353 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Buchholz D., Fredenhagen K.: Locality and the structure of particle states. Commun. Math. Phys. 84, 1–54 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Buchholz D., Lechner G., Summers S.J.: Warped convolutions, Rieffel deformations and the construction of quantum field theories. Commun. Math. Phys. 304, 95–123 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Buchholz D., Mack G., Todorov I.: The current algebra on the circle as a germ of local field theories. Nucl. Phys. B Proc. Suppl. 5B, 20–56 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Buchholz D., Porrmann M., Stein U.: Dirac versus Wigner. Towards a universal particle concept in local quantum field theory. Phys. Lett. B 267, 377–381 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  17. Brattelli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics 1. Berlin– Heidelberg–New York: Springer-Verlag, 1979

  18. Chen T., Fröhlich J., Pizzo A.: Infraparticle scattering states in non-relativistic QED. I. The Bloch-Nordsieck paradigm. Commun. Math. Phys. 294, 761–825 (2010)

    Article  ADS  MATH  Google Scholar 

  19. Chen T., Fröhlich J., Pizzo A.: Infraparticle scattering states in nonrelativistic quantum electrodynamics. II. Mass shell properties. J. Math. Phys. 50, 012103 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  20. Davidson, K.R.: C*-Algebras by Example. Providence, RI: Amer. Math. Soc., 1996

  21. Dereziński J., Gérard C.: Scattering theory of infrared divergent Pauli-Fierz Hamiltonians. Ann. Henri Poincaré 5, 523–577 (2004)

    Article  ADS  MATH  Google Scholar 

  22. Dybalski W.: Haag-Ruelle scattering theory in presence of massless particles. Lett. Math. Phys. 72, 27–38 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Dybalski, W.: Spectral theory of automorphism groups and particle structures in quantum field theory. Ph.D. Thesis, Universität Göttingen, 2008, available at http://webdoc.sub.gwdg.de/diss/2009/dybalski

  24. Dybalski W.: Continuous spectrum of automorphism groups and the infraparticle problem. Commun. Math. Phys. 300, 273–299 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Dybalski W., Tanimoto Y.: Asymptotic completeness in a class of massless relativistic quantum field theories. Commun. Math. Phys. 305, 427–440 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Enss V.: Characterization of particles by means of local observables. Commun. Math. Phys. 45, 35–52 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  27. Florig M.: On Borchers’ theorem. Lett. Math. Phys. 46, 289–293 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fröhlich J.: On the infrared problem in a model of scalar electrons and massless, scalar bosons. Ann. Inst. H. Poincaré Sect. A (N.S.) 19, 1–103 (1973)

    Google Scholar 

  29. Fröhlich J.: Existence of dressed one electron states in a class of persistent models. Fortschr. Phys. 22, 159–198 (1974)

    Article  Google Scholar 

  30. Fröhlich J., Morchio G., Strocchi F.: Charged sectors and scattering states in quantum electrodynamics. Ann. Phys. 119, 241–284 (1979)

    Article  ADS  Google Scholar 

  31. Gabbiani F., Fröhlich J.: Operator algebras and conformal field theory. Commun. Math. Phys. 155, 569–640 (1993)

    Article  ADS  MATH  Google Scholar 

  32. Haag, R.: Local quantum physics. Second edition. Berlin: Springer-Verlag, 1996

  33. Hasler D., Herbst I.: Absence of ground states for a class of translation invariant models of non-relativistic QED. Commun. Math. Phys. 279, 769–787 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Herdegen A.: Infrared problem and spatially local observables in electrodynamics. Ann. Henri Poincaré 9, 373–401 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Johannsen, K.: Teilchenaspekte im Schroermodell. Diplomarbeit, Universität Hamburg, 1991

  36. Kawahigashi Y., Longo R.: Classification of two-dimensional local conformal nets with c < 1 and 2-cohomology vanishing for tensor categories. Commun. Math. Phys. 244, 63–97 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Kawahigashi Y., Longo R.: Classification of local conformal nets. Case c < 1. Ann. Math. 160, 493–522 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Longo, R.: Lectures on Conformal Nets. Real Hilbert subspaces, modular theory, SL(2,R) and CFT. In: Von Neumann algebras in Sibiu: Conference Proceedings. Bucharest: Theta, 2008, pp. 33–91

  39. Pizzo A.: One-particle (improper) states in Nelson’s massless model. Ann. Henri Poincaré 4, 439–486 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pizzo A.: Scattering of an infraparticle: the one particle sector in Nelson’s massless model. Ann. Henri Poincaré 5, 553–606 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  41. Porrmann M.: Particle weights and their disintegration I. Commun. Math. Phys. 248, 269–304 (2004)

    MathSciNet  ADS  MATH  Google Scholar 

  42. Porrmann M.: Particle weights and their disintegration II. Commun. Math. Phys. 248, 305–333 (2004)

    MathSciNet  ADS  MATH  Google Scholar 

  43. Rehren K.-H.: Chiral observables and modular invariants. Commun. Math. Phys. 208, 689–712 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Rejzner, K.: Asymptotic algebra of fields in quantum electrodynamics. Master’s thesis, University of Cracow, 2009

  45. Sakai, S.: C*-algebras and W*-algebras. Berlin–Heidelberg–New York: Springer, 1971

  46. Schroer B.: Infrateilchen in der Quantenfeldtheorie. Fortschr. Phys. 11, 1–31 (1963)

    Article  MathSciNet  Google Scholar 

  47. Stein, U.: Zur Konstruktion von Streuzuständen mit Hilfe lokaler Observabler. Ph.D. Thesis, Universität Hamburg, 1989

  48. Steinmann, O.: Perturbative quantum electrodynamics and axiomatic field theory. Berlin–Heidelberg– New York: Springer, 2000

  49. Takesaki, M.: Theory of operator algebras I. Berlin–Heidelberg– New York: Springer 1979

  50. Wigner E.P.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149–204 (1939)

    Article  MathSciNet  Google Scholar 

  51. Wassermann A.: Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators. Invent. Math. 133(3), 467–538 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. D. Buchholz and Prof. R. Longo for interesting discussions.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Author information

Authors and Affiliations

  1. Zentrum Mathematik, Technische Universität München, 85747, Garching, Germany

    Wojciech Dybalski

  2. Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133, Roma, Italy

    Yoh Tanimoto

Authors
  1. Wojciech Dybalski
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Yoh Tanimoto
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Yoh Tanimoto.

Additional information

Communicated by Y. Kawahigashi

Supported by the DFG grant SP181/25.

Supported in part by the ERC Advanced Grant 227458 OACFT “Operator Algebras and Conformal Field Theory”.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Dybalski, W., Tanimoto, Y. Infraparticles with Superselected Direction of Motion in Two-Dimensional Conformal Field Theory. Commun. Math. Phys. 311, 457–490 (2012). https://doi.org/10.1007/s00220-012-1450-y

Download citation

  • Received: 01 February 2011

  • Accepted: 21 October 2011

  • Published: 08 March 2012

  • Issue Date: April 2012

  • DOI: https://doi.org/10.1007/s00220-012-1450-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Particle Weight
  • Asymptotic Completeness
  • Vacuum Representation
  • Irreducible Subrepresentation
  • Positive Energy Representation
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature