Abstract
Particle aspects of two-dimensional conformal field theories are investigated, using methods from algebraic quantum field theory. The results include asymptotic completeness in terms of (counterparts of) Wigner particles in any vacuum representation and the existence of (counterparts of) infraparticles in any charged irreducible product representation of a given chiral conformal field theory. Moreover, an interesting interplay between the infraparticle’s direction of motion and the superselection structure is demonstrated in a large class of examples. This phenomenon resembles the electron’s momentum superselection expected in quantum electrodynamics.
Article PDF
References
Araki H.: Mathematical theory of quantum fields. Oxford University Press, Oxford (1999)
Araki H., Haag R.: Collision cross sections in terms of local observables. Commun. Math. Phys. 4, 77–91 (1967)
Bischoff M., Meise D., Rehren K.-H., Wagner I.: Conformal quantum field theory in various dimensions. Bulg. J. Phys. 36(3), 170–185 (2009)
Borchers H.-J., Buchholz D.: The energy-momentum spectrum in local field theories with broken Lorentz-symmetry. Commun. Math. Phys. 97, 169–185 (1985)
Buchholz D.: Collision theory for waves in two dimensions and a characterization of models with trivial S-matrix. Commun. Math. Phys. 45, 1–8 (1975)
Buchholz D.: Collision theory for massless bosons. Commun. Math. Phys. 52, 147–173 (1977)
Buchholz D.: The physical state space of quantum electrodynamics. Commun. Math. Phys. 85, 49–71 (1982)
Buchholz D.: Gauss’ law and the infraparticle problem. Phys. Lett. B 174, 331–334 (1986)
Buchholz, D.: Particles, infraparticles and the problem of asymptotic completeness. In: VIIIth International Congress on Mathematical Physics. Marseille 1986. Singapore: World Scientific, 1987
Buchholz D.: Harmonic analysis of local operators. Commun. Math. Phys. 129, 631–641 (1990)
Buchholz, D.: On the manifestations of particles. In: Mathematical Physics Towards the 21st Century. Proceedings Beer-Sheva 1993, Sen, R.N., Gersten, A., eds. Beer-Sheva: Ben-Gurion University of the Negev Press, 1994, pp.177–202
Buchholz D.: Quarks, gluons, colour: facts or fiction?. Nucl. Phys. B 469, 333–353 (1996)
Buchholz D., Fredenhagen K.: Locality and the structure of particle states. Commun. Math. Phys. 84, 1–54 (1982)
Buchholz D., Lechner G., Summers S.J.: Warped convolutions, Rieffel deformations and the construction of quantum field theories. Commun. Math. Phys. 304, 95–123 (2011)
Buchholz D., Mack G., Todorov I.: The current algebra on the circle as a germ of local field theories. Nucl. Phys. B Proc. Suppl. 5B, 20–56 (1988)
Buchholz D., Porrmann M., Stein U.: Dirac versus Wigner. Towards a universal particle concept in local quantum field theory. Phys. Lett. B 267, 377–381 (1991)
Brattelli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics 1. Berlin– Heidelberg–New York: Springer-Verlag, 1979
Chen T., Fröhlich J., Pizzo A.: Infraparticle scattering states in non-relativistic QED. I. The Bloch-Nordsieck paradigm. Commun. Math. Phys. 294, 761–825 (2010)
Chen T., Fröhlich J., Pizzo A.: Infraparticle scattering states in nonrelativistic quantum electrodynamics. II. Mass shell properties. J. Math. Phys. 50, 012103 (2009)
Davidson, K.R.: C*-Algebras by Example. Providence, RI: Amer. Math. Soc., 1996
Dereziński J., Gérard C.: Scattering theory of infrared divergent Pauli-Fierz Hamiltonians. Ann. Henri Poincaré 5, 523–577 (2004)
Dybalski W.: Haag-Ruelle scattering theory in presence of massless particles. Lett. Math. Phys. 72, 27–38 (2005)
Dybalski, W.: Spectral theory of automorphism groups and particle structures in quantum field theory. Ph.D. Thesis, Universität Göttingen, 2008, available at http://webdoc.sub.gwdg.de/diss/2009/dybalski
Dybalski W.: Continuous spectrum of automorphism groups and the infraparticle problem. Commun. Math. Phys. 300, 273–299 (2010)
Dybalski W., Tanimoto Y.: Asymptotic completeness in a class of massless relativistic quantum field theories. Commun. Math. Phys. 305, 427–440 (2011)
Enss V.: Characterization of particles by means of local observables. Commun. Math. Phys. 45, 35–52 (1975)
Florig M.: On Borchers’ theorem. Lett. Math. Phys. 46, 289–293 (1998)
Fröhlich J.: On the infrared problem in a model of scalar electrons and massless, scalar bosons. Ann. Inst. H. Poincaré Sect. A (N.S.) 19, 1–103 (1973)
Fröhlich J.: Existence of dressed one electron states in a class of persistent models. Fortschr. Phys. 22, 159–198 (1974)
Fröhlich J., Morchio G., Strocchi F.: Charged sectors and scattering states in quantum electrodynamics. Ann. Phys. 119, 241–284 (1979)
Gabbiani F., Fröhlich J.: Operator algebras and conformal field theory. Commun. Math. Phys. 155, 569–640 (1993)
Haag, R.: Local quantum physics. Second edition. Berlin: Springer-Verlag, 1996
Hasler D., Herbst I.: Absence of ground states for a class of translation invariant models of non-relativistic QED. Commun. Math. Phys. 279, 769–787 (2008)
Herdegen A.: Infrared problem and spatially local observables in electrodynamics. Ann. Henri Poincaré 9, 373–401 (2008)
Johannsen, K.: Teilchenaspekte im Schroermodell. Diplomarbeit, Universität Hamburg, 1991
Kawahigashi Y., Longo R.: Classification of two-dimensional local conformal nets with c < 1 and 2-cohomology vanishing for tensor categories. Commun. Math. Phys. 244, 63–97 (2004)
Kawahigashi Y., Longo R.: Classification of local conformal nets. Case c < 1. Ann. Math. 160, 493–522 (2004)
Longo, R.: Lectures on Conformal Nets. Real Hilbert subspaces, modular theory, SL(2,R) and CFT. In: Von Neumann algebras in Sibiu: Conference Proceedings. Bucharest: Theta, 2008, pp. 33–91
Pizzo A.: One-particle (improper) states in Nelson’s massless model. Ann. Henri Poincaré 4, 439–486 (2003)
Pizzo A.: Scattering of an infraparticle: the one particle sector in Nelson’s massless model. Ann. Henri Poincaré 5, 553–606 (2005)
Porrmann M.: Particle weights and their disintegration I. Commun. Math. Phys. 248, 269–304 (2004)
Porrmann M.: Particle weights and their disintegration II. Commun. Math. Phys. 248, 305–333 (2004)
Rehren K.-H.: Chiral observables and modular invariants. Commun. Math. Phys. 208, 689–712 (2000)
Rejzner, K.: Asymptotic algebra of fields in quantum electrodynamics. Master’s thesis, University of Cracow, 2009
Sakai, S.: C*-algebras and W*-algebras. Berlin–Heidelberg–New York: Springer, 1971
Schroer B.: Infrateilchen in der Quantenfeldtheorie. Fortschr. Phys. 11, 1–31 (1963)
Stein, U.: Zur Konstruktion von Streuzuständen mit Hilfe lokaler Observabler. Ph.D. Thesis, Universität Hamburg, 1989
Steinmann, O.: Perturbative quantum electrodynamics and axiomatic field theory. Berlin–Heidelberg– New York: Springer, 2000
Takesaki, M.: Theory of operator algebras I. Berlin–Heidelberg– New York: Springer 1979
Wigner E.P.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149–204 (1939)
Wassermann A.: Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators. Invent. Math. 133(3), 467–538 (1998)
Acknowledgments
The authors would like to thank Prof. D. Buchholz and Prof. R. Longo for interesting discussions.
Open Access
This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Y. Kawahigashi
Supported by the DFG grant SP181/25.
Supported in part by the ERC Advanced Grant 227458 OACFT “Operator Algebras and Conformal Field Theory”.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Dybalski, W., Tanimoto, Y. Infraparticles with Superselected Direction of Motion in Two-Dimensional Conformal Field Theory. Commun. Math. Phys. 311, 457–490 (2012). https://doi.org/10.1007/s00220-012-1450-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-012-1450-y