Skip to main content

Entanglement of the Antisymmetric State

Abstract

We analyse the entanglement of the antisymmetric state in dimension d × d and present two main results. First, we show that the amount of secrecy that can be extracted from the state is low, more precisely, the distillable key is bounded by \({O(\frac{1}{d})}\). Second, we show that the state is highly entangled in the sense that a large number of ebits are needed in order to create the state: entanglement cost is larger than a constant, independent of d. The second result is shown to imply that the regularised relative entropy with respect to separable states is also lower bounded by a constant. Finally, we note that the regularised relative entropy of entanglement is asymptotically continuous in the state.

Elementary and advanced facts from the representation theory of the unitary group, including the concept of plethysm, play a central role in the proofs of the main results.

This is a preview of subscription content, access via your institution.

References

  1. Einstein A., Born M.: The Born-Einstein Letters; Correspondence between Albert Einstein and Max and Hedwig Born from 1916 to 1955. Walker, New York (1971)

    Google Scholar 

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proc. IEEE Int. Conference on Computers, Systems and Signal Processing, Bangalore, India, IEEE, 1984, pp. 175–179

  3. Ekert A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  4. Bennett C.H., Bernstein H.J., Popescu S., Schumacher B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)

    ADS  Article  Google Scholar 

  5. Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  6. Bennett C.H., Wiesner S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  7. Bennett C.H., Brassard G., Mermin N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68(5), 557 (1992)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  8. Bennett C.H., DiVincenzo D.P., Smolin J.A., Wootters W.K.: Mixed state entanglement and quantum error correction. Phys. Rev. A 54(5), 3824–3851 (1996)

    MathSciNet  ADS  Article  Google Scholar 

  9. Nielsen M.A., Chuang I.A.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  10. Horodecki M., Horodecki P., Horodecki R.: Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature?. Phys. Rev. Lett. 80, 5239–5242 (1998)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  11. Horodecki K., Horodecki M., Horodecki P., Oppenheim J.: Secure key from bound entanglement. Phys. Rev. Lett. 94, 160502 (2005)

    MathSciNet  ADS  Article  Google Scholar 

  12. Renner, R., Wolf, S.: New bounds in secret-key agreement: The gap between formation and secrecy extraction. In: Proc. Eurocrypt’03 Lecture Notes in Computer Science, Vol. 2656, Berlin-Hedielberg-New York, Springer, 2003, pp. 562–577

  13. Christandl M., Schuch N., Winter A.: Highly entangled states with almost no secrecy. Phys. Rev. Lett. 104, 240405 (2010)

    MathSciNet  ADS  Article  Google Scholar 

  14. Christandl, M.: The Structure of Bipartite Quantum States - Insights from Group Theory and Cryptography. Ph.D. thesis, University of Cambridge, 2006, http://arxiv.org/abs/quant-ph/0604183

  15. Christandl M., Winter A.: Squashed entanglement – an additive entanglement measure. J. Math. Phys. 45(3), 829–840 (2004)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  16. Hastings M.B.: Superadditivity of communication capacity using entangled inputs. Nature Physics 5(4), 255–257 (2009)

    MathSciNet  ADS  Article  Google Scholar 

  17. Shor P.W.: Equivalence of additivity questions in quantum information theory. Commun. Math. Phys. 246(3), 453–472 (2003)

    MathSciNet  ADS  Article  Google Scholar 

  18. Vollbrecht K.G.H., Werner R.F.: Entanglement measures under symmetry. Phys. Rev. A 64(6), 062307 (2001)

    ADS  Article  Google Scholar 

  19. Audenaert K., Eisert J., Jane E., Plenio M.B., Virmani S., De Moor B.: The asymptotic relative entropy of entanglement. Phys. Rev. Lett. 87, 217902 (2001)

    ADS  Article  Google Scholar 

  20. Fulton, W., Harris, J.: Representation Theory - A First Course. Graduate Texts in Mathematics, Vol. 129, Berlin-Hedielberg-New York, Springer, 1991

  21. Chvatal, V.: Linear Programming New York, W.H.Freeman & Co, 1983

  22. Renner, R., König, R.: Universally composable privacy amplification against quantum adversaries. In: Second Theory of Cryptography Conference, TCC 2005, LNCS, Vol. 3378, edited by J. Kilian Berlin-Hedielberg-New York, Springer, 2005, pp. 407–425

  23. Carter J.L., Wegman M.N.: Universal classes of hash functions. J. Comp. Sys. Sci. 18, 143–154 (1979)

    MathSciNet  Article  MATH  Google Scholar 

  24. Alicki R., Fannes M.: Continuity of quantum conditional information. J. Phys. A: Math. Gen. 37, L55–L57 (2004)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  25. Aaronson, S., Beigi, S., Drucker, A., Fefferman, B., Shor, P.: The power of unentanglement. In Proc. CCC’08 (IEEE Conf. Computational Complexity) 2008, pp. 223–236

  26. Yura F.: Entanglement cost of three-level antisymmetric states. J. Phys. A: Math. Gen. 36, L237–L242 (2003)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  27. Horodecki K., Horodecki M., Horodecki P., Oppenheim J.: Locking entanglement with a single qubit. Phys. Rev. Lett. 94, 200501 (2005)

    MathSciNet  ADS  Article  Google Scholar 

  28. Linden N., Popescu S., Schumacher B., Westmoreland M.: Reversibility of local transformations of multiparticle entanglement. Quant. Inf. Proc. 4, 241–250 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  29. Eisert J., Felbinger T., Papadopoulos P., Plenio M.B., Wilkens M.: Classical information and distillable entanglement. Phys. Rev. Lett. 84(7), 1611–1614 (2000)

    ADS  Article  Google Scholar 

  30. Synak-Radtke B., Horodecki M.: On asymptotic continuity of functions of quantum states. J. Phys. A: Math. Gen. 39, L423–L437 (2006)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  31. Donald M.J., Horodecki M., Rudolph O.: The uniqueness theorem for entanglement measures. J. Math. Phys. 43, 4252–4272 (2002)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  32. Horodecki K., Horodecki M., Horodecki P.: Locking entanglement with a single qubit. J. Oppenheim, Phys. Rev. Lett. 94, 200501 (2005)

    MathSciNet  ADS  Article  Google Scholar 

  33. Doherty A.C., Parrilo P.A., Spedalieri F.M.: Complete family of separability criteria. Phys. Rev. A 69, 022308 (2004)

    ADS  Article  Google Scholar 

  34. Ioannou L.M.: Computational complexity of the quantum separability problem. Quant. Inf. Comp. 7, 335–370 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Christandl M., König R., Mitchison G., Renner R.: One-and-a-half Quantum de Finetti theorems. Commun. Math. Phys. 273, 473–498 (2007)

    ADS  Article  MATH  Google Scholar 

  36. Navascues M., Owari M., Plenio M.B.: Complete Criterion for Separability Detection. Phys. Rev. Lett. 103(16), 160–404 (2009)

    Article  Google Scholar 

  37. Navascues M., Owari M., Plenio M.B.: Power of symmetric extensions for entanglement detection Phys. Rev. A 80(5), 052306 (2009)

    Article  Google Scholar 

  38. Hayden P., Leung D.W., Winter A.: Aspects of generic entanglement Commun. Math. Phys. 265, 95 (2006)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  39. Horodecki M., Horodecki P., Horodecki R.: Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature?. Phys. Rev. Lett. 80(24), 5239–5242 (1998)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  40. Yang D., Horodecki K., Horodecki M., Horodecki P., Oppenheim J., Song W.: Squashed entanglement for multipartite states and entanglement measures based on the mixed convex roof. IEEE Trans. Inf. Th. 55, 3375 (2009)

    MathSciNet  Article  Google Scholar 

  41. Fulton W.: Young Tableaux, London Mathematical Society Student Texts, Vol. 35. Cambridge Univ. Press, Cambridge (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Christandl.

Additional information

Communicated by M. B. Ruskai

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Christandl, M., Schuch, N. & Winter, A. Entanglement of the Antisymmetric State. Commun. Math. Phys. 311, 397–422 (2012). https://doi.org/10.1007/s00220-012-1446-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1446-7

Keywords

  • Irreducible Representation
  • Relative Entropy
  • Separable State
  • Young Diagram
  • Entanglement Measure