Advertisement

Communications in Mathematical Physics

, Volume 311, Issue 2, pp 317–355 | Cite as

Universality of Conductivity in Interacting Graphene

  • A. Giuliani
  • V. MastropietroEmail author
  • M. Porta
Article

Abstract

The Hubbard model on the honeycomb lattice describes charge carriers in graphene with short range interactions. While the interaction modifies several physical quantities, like the value of the Fermi velocity or the wave function renormalization, the a.c. conductivity has a universal value independent of the microscopic details of the model: there are no interaction corrections, provided that the interaction is weak enough and that the system is at half filling. We give a rigorous proof of this fact, based on exact Ward Identities and on constructive Renormalization Group methods.

Keywords

Hubbard Model Ward Identity Quantum Hall Effect Fermi Velocity Honeycomb Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thouless D.J., Kohmoto M., Nightingale M.P., den Nijs M.: Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    Avron J.E., Seiler R., Simon B.: Quantum Hall effect and the relative index for projections. Phys. Rev. Lett 65, 2185 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    Ishikawa K., Matsuyama T.: A microscopic theory of the quantum Hall effect. Nucl. Phys. B 280, 523 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    Semenoff G.W.: Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett. 53, 2449 (1984)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Nair R.R. et al.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Li Z.Q. et al.: Dirac charge dynamics in graphene by infrared spectroscopy. Nature Phys. 4, 532 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Ando T. et al.: Dynamical conductivity and zero-mode anomaly in honeycomb lattices. J. Phys. Soc. Jpn. 71, 1318 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Gusynin V. P. et al.: Unusual microwave response of Dirac quasiparticles in graphene. Phys. Rev. Lett. 96, 256802 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Stauber T., Peres N., Geim A.: Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B 78, 085432 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Herbut I., Juricic V., Vafek O.: Coulomb interaction, ripples, and the minimal conductivity of graphene. Phys. Rev. Lett. 100, 046403 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Herbut I., Juricic V., Vafek O.: Conductivity of interacting massless Dirac particles in graphene: Collisionless regime. Phys. Rev. B 82, 235402 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Herbut, I., Juricic, V., Vafek, O.: Comment on “Minimal conductivity in graphene: Interaction corrections and ultraviolet anomaly” by Mishchenko E. G. http://arXiv:0809.0725 (unpublished)
  13. 13.
    Mishchenko E.G.: Effect of electron-electron interactions on the conductivity of clean graphene. Phys. Rev. Lett. 98, 216801 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Mishchenko E. G.: Minimal conductivity in graphene: Interaction corrections and ultraviolet anomaly. Europhys. Lett. 83, 17005 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Sheehy D., Schmalian J.: Quantum critical scaling in graphene. Phys. Rev. Lett. 99, 226803 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Sheehy D., Schmalian J.: Optical transparency of graphene as determined by the fine-structure constant. Phys. Rev. B 80, 193411 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Giuliani A., Mastropietro V.: The two-dimensional Hubbard model on the honeycomb lattice. Commun. Math. Phys. 293, 301 (2010)MathSciNetADSCrossRefzbMATHGoogle Scholar
  18. 18.
    Giuliani A., Mastropietro V.: Rigorous construction of ground state correlations in graphene: Renormalization of the velocities and Ward identities. Phys. Rev. B 79, 201403(R) (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Giuliani, A., Mastropietro, V.: Erratum: Rigorous construction of ground state correlations in graphene: Renormalization of the velocities and Ward identities [Phys. Rev. B 79, 201403(R) (2009)]. Phys. Rev. B 82, 199901 (2010)Google Scholar
  20. 20.
    Ziegler K.: Minimal conductivity of graphene: Nonuniversal values from the Kubo formula. Phys. Rev. B 75, 233407 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Università di Roma TreRomaItaly
  2. 2.Università di Roma Tor VergataRomaItaly
  3. 3.ETHZürichSwitzerland

Personalised recommendations