Skip to main content
Log in

Index Theory of One Dimensional Quantum Walks and Cellular Automata

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

If a one-dimensional quantum lattice system is subject to one step of a reversible discrete-time dynamics, it is intuitive that as much “quantum information” as moves into any given block of cells from the left, has to exit that block to the right. For two types of such systems — namely quantum walks and cellular automata — we make this intuition precise by defining an index, a quantity that measures the “net flow of quantum information” through the system. The index supplies a complete characterization of two properties of the discrete dynamics. First, two systems S 1, S 2 can be “pieced together”, in the sense that there is a system S which acts like S 1 in one region and like S 2 in some other region, if and only if S 1 and S 2 have the same index. Second, the index labels connected components of such systems: equality of the index is necessary and sufficient for the existence of a continuous deformation of S 1 into S 2. In the case of quantum walks, the index is integer-valued, whereas for cellular automata, it takes values in the group of positive rationals. In both cases, the map \({S \mapsto {\rm ind} S}\) is a group homomorphism if composition of the discrete dynamics is taken as the group law of the quantum systems. Systems with trivial index are precisely those which can be realized by partitioned unitaries, and the prototypes of systems with non-trivial index are shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlbrecht A., Vogts H., Werner A.H., Werner R.F.: Asymptotic evolution of quantum walks with random coin. J. Math. Phys. 52, 042201 (2011)

    Article  ADS  Google Scholar 

  2. Arrighi, P., Nesme, V., Werner, R.F.: Unitarity plus causality implies locality. http://arxiv.org/abs/0711.3975v3 [quant-ph], 2009

  3. Avron J., Seiler R., Simon B: The index of a pair of projections. J. Funct. Anal 120, 220–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beckman D., Gottesman D., Nielsen M.A., Preskill J.: Causal and localizable quantum operations. Phys. Rev. A 64, 052309 (2001)

    Article  ADS  Google Scholar 

  5. Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics. I+II. New York: Springer, 1979, 1997

  6. Buchholz D.: The physical state space of quantum electrodynamics. Commun. Math. Phys 85, 49–71 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Gao X., Nguyen T., Strang G.: On factorization of m-channel paraunitary filterbanks. IEEE Trans. Signal Proc 49(7), 1433–1446 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  8. Hedlund G.A.: Endomorphisms and automorphisms of the shift dynamical systems. Math. Syst. Th 3(4), 320–375 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hein M., Eisert J., Briegel H.: Multi-party entanglement in graph states. Phys. Rev. A 69, 062311 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  10. Kari J.: Representation of reversible cellular automata with block permutations. Math. Syst, Th 29(1), 47–61 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Kato T.: Perturbation theory of linear operators. Springer, Berlin-Heidelberg-Newyork (1995)

    MATH  Google Scholar 

  12. Kitaev A.: Anyons in an exactly solved model and beyond. Ann. Phys 321, 2–111 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Nielsen M.A., Chuang I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  14. Roe, J.: Lectures on coarse geometry. Providence, RI: Amer. Math. Soc., 2003

  15. Schlingemann D., Werner R.: Quantum error-correcting codes associated with graphs. Phys. Rev. A 65(1), 012308 (2001)

    Article  ADS  Google Scholar 

  16. Schumacher, B., Werner, R.: Reversible quantum cellular automata. http://arxiv.org/abs/quant-ph/0405174v1, 2004

  17. Vogts, H.: Quanten-Zellularautomaten mit lokalen Erhaltungsgrößen. Diplomarbeit, Braunschweig 2005, http://www.imaph.tu-bs.de/ftp/vogts/dip_hv.pdf

  18. Werner R.F.: Local preparability of states and the split property in quantum field theory. Lett. Math. Phys 13(4), 325–329 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Zanardi P.: Stabilizing quantum information. Phys. Rev. A 63, 12301 (2001)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Gross.

Additional information

Communicated by M. B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, D., Nesme, V., Vogts, H. et al. Index Theory of One Dimensional Quantum Walks and Cellular Automata. Commun. Math. Phys. 310, 419–454 (2012). https://doi.org/10.1007/s00220-012-1423-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1423-1

Keywords

Navigation