Skip to main content

Analyticity of the Ground State Energy for Massless Nelson Models

Abstract

We show that the ground state energy of the translationally invariant Nelson model, describing a particle coupled to a relativistic field of massless bosons, is an analytic function of the coupling constant and the total momentum. We derive an explicit expression for the ground state energy which is used to determine the effective mass.

This is a preview of subscription content, access via your institution.

References

  1. Abdesselam, A.: Notes on the Brydges-Kennedy-Abdesselam-Rivasseau forest interpolation formula. Notes for a graduate course at the University of Virginia. Available at http://people.virginia.edu/~aa4cr/Math895.html

  2. Abdesselam A.: The ground state energy of the massless spin-Boson model. Ann. Henri Poincaré 12, 1321–1347 (2011)

    ADS  MATH  Article  Google Scholar 

  3. Abdesselam, A., Rivasseau, V.: Trees, forests and jungles: a botanical garden for cluster expansions. In: Constructive Physics (Palaiseau, 1994), Lecture Notes in Phys. 446. Berlin: Springer, 1995, pp. 7–36

  4. Alexandrou C., Rosenfelder R.: Stochastic solution to highly nonlocal actions: the polaron problem. Phys. Rep. 215, 1–48 (1992)

    MathSciNet  ADS  Article  Google Scholar 

  5. Arai, A.: On a model of a harmonic oscillator coupled to a quantized, massless, scalar field. I, II. J. Math. Phys. 22(11), 2539–2548, 2549–2552 (1981)

    Google Scholar 

  6. Arai A.: Ground state of the massless Nelson model without infrared cutoff in a non-Fock representation. Rev. Math. Phys. 13, 1075–1094 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  7. Bach, V., Chen, T., Fröhlich, J., Sigal, I.M.: The renormalized electron mass in non-relativistic quantum electrodynamics. J. Funct. Anal. 243(2), 426–535 (2007)

    Google Scholar 

  8. Bach V., Fröhlich J., Sigal I.M.: Quantum electrodynamics of confined non-relativistic particles. Adv. Math. 137, 299–395 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  9. Betz, V., Hiroshima, F., Lőrinczi, J., Minlos, R.A., Spohn, H.: Ground state properties of the Nelson Hamiltonian: a Gibbs measure-based approach. Rev. Math. Phys. 14(2), 173–198 (2002)

    Google Scholar 

  10. Bogoliubov N.N. Jr, Plechko V.N.: Perturbation theory in the polaron model at finite temperature. Theor. Math. Phys. 65, 1255–1263 (1985)

    Article  Google Scholar 

  11. Brydges, D., Kennedy, T.: Mayer expansions and the Hamilton-Jacobi equation. J. Stat. Phys. 48(1–2), 19–49 (1987)

    Google Scholar 

  12. Chen, T.: Infrared renormalization in non-relativistic QED and scaling criticality. J. Funct. Anal. 254(10), 2555–2647 (2008)

    Google Scholar 

  13. Devreese, J.T., Alexandrov. A.S.: Fröhlich polaron and bipolaron: recent developments. Rep. Prog. Phys. 72, 066501 (2009) (52pp)

    Google Scholar 

  14. Faris W.G.: Invariant cones and uniqueness of the ground state for fermion systems. J. Math. Phys 13, 1285–1290 (1972)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  15. Fröhlich J.: On the infrared problem in a model of scalar electrons and massless, scalar bosons. Ann. Inst. Henri Poincaré 19, 1–103 (1973)

    Google Scholar 

  16. Fröhlich J.: Existence of dressed electron states in a class of persistent models. Fortschr. Phys. 22, 159–198 (1974)

    Article  Google Scholar 

  17. Fröhlich, J., Pizzo, A.: Renormalized electron mass in nonrelativistic QED. Commun. Math. Phys. 294(2), 439–470 (2010)

    Google Scholar 

  18. Gerlach B., Löwen H.: Analytical properties of polaron systems or: Do polaronic phase transitions exist or not?. Rev. Mod. Phys. 63, 63–90 (1991)

    ADS  Article  Google Scholar 

  19. Gerlach B., Löwen H., Schliffke H.: Functional-integral approach to the polaron mass. Phys. Rev. B 36, 6320–6324 (1987)

    ADS  Article  Google Scholar 

  20. Griesemer, M., Hasler, D.: Analytic perturbation theory and renormalization analysis of matter coupled to quantized radiation. Ann. Henri Poincaré 10(3), 577–621 (2009)

    Google Scholar 

  21. Gross L.: Existence and uniqueness of physical ground states. J. Funct. Anal. 10, 52–109 (1972)

    MATH  Article  Google Scholar 

  22. Hainzl, C., Seiringer, R.: Mass renormalization and energy level shift in non-relativistic QED. Adv. Theor. Math. Phys. 6(5), 847–871 (2002)

    Google Scholar 

  23. Hasler, D., Herbst, I.: Absence of ground states for a class of translation invariant models of non-relativistic QED. Commun. Math. Phys. 279(3), 769–787 (2008)

    Google Scholar 

  24. Hiroshima, F., Spohn, H.: Mass renormalization in nonrelativistic quantum electrodynamics. J. Math. Phys. 46(4), 042302 (2005) 27 pp

    Google Scholar 

  25. Kholodenko A.L., Freed K.F.: Direct path-integral treatment of the polaron problem. Phys. Rev. B 27, 4586–4600 (1983)

    MathSciNet  ADS  Article  Google Scholar 

  26. Lőrinczi J., Minlos R.A., Spohn H.: The infrared behaviour in Nelson’s model of a quantum particle coupled to a massless scalar field. Ann. Henri Poincaré 3, 1–28 (2002)

    Article  Google Scholar 

  27. Nelson E.: Interaction of nonrelativistic particles with a quantized scalar field. J. Math. Phys. 5, 1190–1197 (1964)

    ADS  Article  Google Scholar 

  28. Pizzo, A.: Scattering of an Infraparticle: the one particle sector in Nelson’s massless model. Ann. Henri Poincaré 6(3), 553–606 (2005)

    Google Scholar 

  29. Rosenfelder, R.: Perturbation theory without diagrams: The polaron case. Phys. Rev. E 79, 016705 (2009) (16pp)

    Google Scholar 

  30. Sasaki I.: Ground state of the massless Nelson model in a non-Fock representation. J. Math. Phys. 46, 102107–102118 (2005)

    MathSciNet  ADS  Article  Google Scholar 

  31. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness. New York-London: Academic Press, 1975

  32. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. New York-London: Academic Press, 1978

  33. Schach Møller, J.: The translation invariant massive Nelson model. I. The bottom of the spectrum. Ann. Henri Poincaré 6(6), 1091–1135 (2005)

  34. Simon, B.: The \({P(\phi)_2}\) Euclidean (Quantum) Field Theory. Princeton, NJ: Princeton University Press, 1974

  35. Simon, B.: Functional Integration and Quantum Physics. New York, San Francisco, London: Academic Press, 1979

  36. Smondyrev M.A.: Diagrams in the polaron model. Theor. Math. Phys. 68, 653–664 (1986)

    Article  Google Scholar 

  37. Spohn H.: Effective mass of the polaron: a functional integral approach. Ann. Phys. 175, 278–318 (1987)

    MathSciNet  ADS  Article  Google Scholar 

  38. Spohn H.: The polaron at large total momentum. J. Phys. A: Math. Gen. 21, 1199–1211 (1988)

    MathSciNet  ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelmalek Abdesselam.

Additional information

Communicated by I. M. Sigal

On leave from: Department of Mathematics, College of William and Mary, Williamsburg VA, 23187-8795, USA.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abdesselam, A., Hasler, D. Analyticity of the Ground State Energy for Massless Nelson Models. Commun. Math. Phys. 310, 511–536 (2012). https://doi.org/10.1007/s00220-011-1407-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1407-6

Keywords

  • Ground State Energy
  • Positivity Preserve
  • Harmonic Oscillator Potential
  • Nelson Model
  • Path Integral Representation