Communications in Mathematical Physics

, Volume 310, Issue 2, pp 383–418 | Cite as

The Complexity of Relating Quantum Channels to Master Equations

  • Toby S. Cubitt
  • Jens Eisert
  • Michael M. Wolf


Completely positive, trace preserving (CPT) maps and Lindblad master equations are both widely used to describe the dynamics of open quantum systems. The connection between these two descriptions is a classic topic in mathematical physics. One direction was solved by the now famous result due to Lindblad, Kossakowski, Gorini and Sudarshan, who gave a complete characterisation of the master equations that generate completely positive semi-groups. However, the other direction has remained open: given a CPT map, is there a Lindblad master equation that generates it (and if so, can we find its form)? This is sometimes known as the Markovianity problem. Physically, it is asking how one can deduce underlying physical processes from experimental observations.

We give a complexity theoretic answer to this problem: it is NP-hard. We also give an explicit algorithm that reduces the problem to integer semi-definite programming, a well-known NP problem. Together, these results imply that resolving the question of which CPT maps can be generated by master equations is tantamount to solving P = NP: any efficiently computable criterion for Markovianity would imply P = NP; whereas a proof that P = NP would imply that our algorithm already gives an efficiently computable criterion. Thus, unless P does equal NP, there cannot exist any simple criterion for determining when a CPT map has a master equation description.

However, we also show that if the system dimension is fixed (relevant for current quantum process tomography experiments), then our algorithm scales efficiently in the required precision, allowing an underlying Lindblad master equation to be determined efficiently from even a single snapshot in this case.

Our work also leads to similar complexity-theoretic answers to a related long-standing open problem in probability theory.


Master Equation Quantum Channel Open Quantum System Stochastic Matrice Embedding Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge Univ. Press, Cambridge (2000)zbMATHGoogle Scholar
  2. 2.
    Carmichael H.J.: Statistical Methods in Quantum Optics, Volume 1. Berlin-Heidelberg-New York: Springer, 2003Google Scholar
  3. 3.
    Weiss, U.: Quantum dissipative systems. Series in Modern Condensed Matter Physics. River Edge, NJ: World Scientific, 1999Google Scholar
  4. 4.
    Lindblad G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Gorini V., Kossakowski A., Sudarshan E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Holevo A.S.: Statistical structure of quantum theory. Berlin-Heidelberg-New, York: Springer (2001)zbMATHGoogle Scholar
  7. 7.
    Wolf M.M., Eisert J., Cubitt T.S., Cirac J.I.: Assessing non-Markovian quantum dynamics. Phys. Rev. Lett. 101, 150402 (2008)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Boulant, N., Havel, T.F., Pravia, M.A., Cory, D.G.: Robust method for estimating the Lindblad operators of a dissipative quantum process from measurements of the density operator at multiple time points. Phys. Rev. A 67 042322 (2003)Google Scholar
  9. 9.
    Boulant N., Emerson J., Havel T.F., Cory D.G.: Incoherent noise and quantum information processing. J. Chem. Phys. 121(7), 2955 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Howard M. et al.: Quantum process tomography and linblad estimation of a solid-state qubit. New J. Phys 8, 33 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Weinstein Y.S. et al.: Quantum process tomography of the quantum fourier transform. J. Chem. Phys 121, 6117 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Lidar D.A., Bihary Z., Whaley K.B.: From completely positive maps to the quantum Markovian semigroup master equation. Chem. Phys 268, 35 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    Papadimitriou, C.H.: Computational Complexity. Reading, MA: Addison Wesley (1993)Google Scholar
  14. 14.
    Garey, M.R., Johnson D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Sanfrancisco, CA: W.H. Freeman (1979)Google Scholar
  15. 15.
    Norris J.R.: Markov Chains. Cambridge Univ. Press, Cambridge (1997)zbMATHGoogle Scholar
  16. 16.
    Elfving, G.: Zur theorie der Markoffschen ketten. Acta Soc. Sei. Fennicae. 2(8) (1937)Google Scholar
  17. 17.
    Kingman J.F.C.: The imbedding problem for finite Markov chains. Z. Wahr 1, 14 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Kingman J.F.C., Williams D.: The combinatorial structure of non-homogeneous Markov chains. Z. Wahr 26, 77 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Fuglede B.: On the imbedding problem for stochastic and doubly stochastic matrices. Probab. Th. Rel. Fields, 80, 241 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Mukherjea A.: The role of nonnegative idempotent matrices in certain problems in probability. In: Charles R. Johnson, ed., Matrix theory and applications. Providence, RI: Amer. Math. Soc., 1990Google Scholar
  21. 21.
    Cubitt, T.S.: The embedding problem for stochastic matrices is NP-hard. Manuscript in preparationGoogle Scholar
  22. 22.
    Nielsen M.A., Knill E., Laflamme R.: Complete quantum teleportation using nuclear magnetic resonance. Nature 396, 52 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    Vandersypen L.M.K., Chuang I.L.: NMR techniques for quantum control and computation. Rev. Mod. Phys 76, 1037 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    Emerson J. et al.: Symmetrized characterization of noisy quantum processes. Science, 317, 1893 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Riebe M. et al.: Process tomography of ion trap quantum gates. Phys. Rev. Lett 97, 220407 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    Monz T. et al.: Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102, 040501 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    O’Brien J.L. et al.: Quantum process tomography of a controlled-not gate. Phys. Rev. Lett. 93, 080502 (2004)CrossRefGoogle Scholar
  28. 28.
    Lundeen J.S. et al.: Tomography of quantum detectors. Nature Phys 5, 27 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Howard M. et al.: Quantum process tomography and Linblad estimation of a solid-state qubit. New J. Phys 8, 33 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Choi M.D.: Completely positive linear maps on complex matrices. Lin. Alg. Appl 10, 285 (1975)zbMATHCrossRefGoogle Scholar
  31. 31.
    Jamiolkowski A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3, 275 (1972)MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. 32.
    Wolf M.M., Cirac J.I.: Dividing quantum channels. Commun. Math. Phys. 279, 147 (2008)MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. 33.
    Denisov L.V.: Infinitely divisible markov mappings in quantum probability theory. Th. Prob. Appl 33, 392 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Gurvits, L.: Classical deterministic complexity of Edmonds problem and quantum entanglement. In: Proceedings of the thirty-fifth ACM symposium on Theory of computing. New York: ACM Press, 2003, pp. 10–19Google Scholar
  35. 35.
    Ioannou L.M.: Computational complexity of the quantum separability problem. Quant. Inf. Comp. 7(4), 335–370 (2007)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Vandenberghe L., Boyd S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Horn R.A., Johnson C.R.: Topics in Matrix Analysis. Cambridge Univ. Press, Cambridge (1994)zbMATHGoogle Scholar
  38. 38.
    Kato, T.: Perturbation Theory for Linear Operators. Berlin-Heidelberg-New York: Springer, Second edition, 1976Google Scholar
  39. 39.
    Weilenmann J.: Continuity properties of fractional powers, of the logarithm, and of holomorphic semigroups. J. Func. Anal. 27, 1–20 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Moler C., Van Loan C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45, 3–49 (2003)MathSciNetADSzbMATHCrossRefGoogle Scholar
  41. 41.
    Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the 10th Annual ACM Symposium on Theory of Computing (STOC’78), New York:ACM Press, 1978, p. 216Google Scholar
  42. 42.
    Stewart G.W.: Error and perturbation bounds for subspaces associated with certain eigenvalue problems. SIAM Rev. 15(4), 727–764 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Golub, G.H., van Loan, C.F.: Matrix Computations. Baltimore, MD: Johns Hopkins University Press, Third edition, 1996Google Scholar
  44. 44.
    Horn R.A., Johnson C.R.: Matrix Analysis. Cambridge Univ. Press, Cambridge (1990)zbMATHGoogle Scholar
  45. 45.
    Schrijver A.: Theory of Linear and Integer Programming. Wiley, New York (1986)zbMATHGoogle Scholar
  46. 46.
    Porkolab, L., Khachiyan, L.: Computing integral points in convex semi-algebraic sets. In: Proceedings of the 38th Annual Symposium on Foundations of Computer Science (FOCS ’97), Discataway, NJ: IEEE 1997, p. 162Google Scholar
  47. 47.
    Porkolab, L.: On the Complexity of Real and Integer Semidefinite Programming. PhD thesis, Rutgers, (1996)Google Scholar
  48. 48.
    Cuthbert J.R.: The logarithm function for finite-state Markov semi-groups. J. London Math. Soc. 6(2), 524 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Johansen S.: Some results on the imbedding problem for finite markov chains. J. London Math. Soc. 8(2), 345 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Carette, P.: Characterizations of embeddable 3x3 stochastic matrices with a negative eigenvalue. New York J. Math. 1, 120 (1995)Google Scholar
  51. 51.
    Cuthbert J.R.: On uniqueness of the logarithm for Markov semi-groups. J. London Math. Soc. 4(2), 623 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Davies E.B.: Embeddable Markov matrices. Electronic J. Prob 15, 1474 (2010)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Toby S. Cubitt
    • 1
    • 2
  • Jens Eisert
    • 3
    • 4
  • Michael M. Wolf
    • 5
    • 6
  1. 1.Department of MathematicsUniversity of BristolBristolUK
  2. 2.Departamento de Análisis MatemáticoUniversidad Complutense de MadridMadridSpain
  3. 3.Dahlem Center for Complex Quantum SystemsFreie Universität BerlinBerlinGermany
  4. 4.Institute for Physics and AstronomyPotsdam UniversityPotsdamGermany
  5. 5.Niels Bohr InstituteCopenhagenDenmark
  6. 6.Zentrum MathematikTechnische Universität MünchenGarchingGermany

Personalised recommendations