Skip to main content
Log in

The Number of Nodal Domains on Quantum Graphs as a Stability Index of Graph Partitions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Courant theorem provides an upper bound for the number of nodal domains of eigenfunctions of a wide class of Laplacian-type operators. In particular, it holds for generic eigenfunctions of a quantum graph. The theorem stipulates that, after ordering the eigenvalues as a non decreasing sequence, the number of nodal domains ν n of the n th eigenfunction satisfies nν n . Here, we provide a new interpretation for the Courant nodal deficiency d n = nν n in the case of quantum graphs. It equals the Morse index — at a critical point — of an energy functional on a suitably defined space of graph partitions. Thus, the nodal deficiency assumes a previously unknown and profound meaning — it is the number of unstable directions in the vicinity of the critical point corresponding to the n th eigenfunction. To demonstrate this connection, the space of graph partitions and the energy functional are defined and the corresponding critical partitions are studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Obeid, O.: On the number of the constant sign zones of the eigenfunctions of a dirichlet problem on a network (graph). Technical report, Voronezh: Voronezh State University, 1992. in Russian, deposited in VINITI 13.04.93, N 938 – B 93. – 8 p

  2. Band, R., Berkolaiko, G., Smilansky, U.: Dynamics of nodal points and the nodal count on a family of quantum graphs. Ann. Henri Poincare, pp. 1–40. doi:10.1007/s00023-011-0124-1. http://dx.doi.org/10.1007/s00023-011-0124-1

  3. Band, R., Oren, I., Smilansky, U.: Nodal domains on graphs — how to count them and why? In Analysis on graphs and its applications, volume 77 of Proc. Sympos. Pure Math., Providence, RI: Amer. Math. Soc., 2008, pp. 5–27

  4. Band R., Shapira T., Smilansky U.: Nodal domains on isospectral quantum graphs: the resolution of isospectrality?. J. Phys. A 39(45), 13999–14014 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Berkolaiko G.: A lower bound for nodal count on discrete and metric graphs. Commun. Math. Phys. 278(3), 803–819 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Berkolaiko, G., Kuchment, P.: Dependence of the spectrum of a quantum graph on vertex conditions and edge lengths. http://arxiv.org/abs/1008.0369v2 [math-ph], 2011

  7. Berkolaiko, G., Kuchment, P., Smilansky, U.: Critical partitions and nodal deficiency of billiard eigenfunctions. http://arxiv.org/abs/1107.3489v4 [math-ph], 2011

  8. Berkolaiko, G., Raz, H., Smilansky, U.: Stability of nodal structures in graph eigenfunctions and its relation to the nodal domain count. http://arXiv:1110.3802v1 [math-ph] (2011)

  9. Blum G., Gnutzmann S., Smilansky U.: Nodal domains statistics: A criterion for quantum chaos. Phys. Rev. Lett. 88(11), a01 (2002)

    Article  Google Scholar 

  10. Brüning, J., Klawonn, D., Puhle, C.: Comment on: “Resolving isospectral ‘drums’ by counting nodal domains” [J. Phys. A 38(41), 8921–8933 (2005)] by Gnutzmann, S., Smilansky, U., Sondergaard, N.: J. Phys. A 40(50), 15143–15147 (2007)

  11. Bucur D., Buttazzo G., Henrot A.: Existence results for some optimal partition problems. Adv. Math. Sci. Appl. 8(2), 571–579 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Caffarelli L.A., Lin F.H.: An optimal partition problem for eigenvalues. J. Sci. Comput. 31(1-2), 5–18 (2007)

    Article  MathSciNet  Google Scholar 

  13. Conti M., Terracini S., Verzini G.: On a class of optimal partition problems related to the Fučík spectrum and to the monotonicity formulae. Calc. Var. Part. Diff. Eq. 22(1), 45–72 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Courant, R.: Ein allgemeiner Satz zur Theorie der Eigenfunktione selbstadjungierter Differentialausdrücke. Nach. Ges. Wiss. Göttingen Math.-Phys. Kl., pages 81–84, July 1923

  15. Courant, R., Hilbert, D.: Methods of mathematical physics. Vol. I. New York: Interscience Publishers, Inc., 1953

  16. Friedlander L.: Genericity of simple eigenvalues for a metric graph. Israel J. Math. 146, 149–156 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gnutzmann S., Smilansky U., Sondergaard N.: Resolving isospectral ‘drums’ by counting nodal domains. J. Phys. A 38(41), 8921–8933 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Gnutzmann S., Smilansky U., Weber J.: Nodal counting on quantum graphs. Waves Random Media 14(1), S61–S73 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Han, Q., Lin, F.-H.: Nodal sets of solutions of elliptic differential equations. Book in preparation, 2010

  20. Harmer M.: Hermitian symplectic geometry and extension theory. J. Phys. A 33(50), 9193–9203 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Helffer B.: On spectral minimal partitions: A survey. Milan J. Math. 78(2), 575–590 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Helffer, B., Hoffmann-Ostenhof, T.: Converse spectral problems for nodal domains, Extended version. Preprint mp_arc 05-343, Sept 2005

  23. Helffer, B., Hoffmann-Ostenhof, T.: On nodal patterns and spectral optimal partitions. Unpublished notes, Dec. 2005

  24. Helffer B., Hoffmann-Ostenhof T.: Converse spectral problems for nodal domains. Mosc. Math. J. 7, 67–84 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Helffer B., Hoffmann-Ostenhof T., Terracini S.: Nodal domains and spectral minimal partitions. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(1), 101–138 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Hinton, D.: Sturm’s 1836 oscillation results: evolution of the theory. In: Sturm-Liouville theory, Basel: Birkhäuser, 2005, pp. 1–27

  27. Karageorge, P.D., Smilansky, U.: Counting nodal domains on surfaces of revolution. J. Phys. A 41(20), 205102, 26 (2008)

    Google Scholar 

  28. Klawonn, D.: Inverse nodal problems. J. Phys. A 42(17), 175209, 11 (2009)

    Google Scholar 

  29. Kostrykin V., Schrader R.: Kirchhoff’s rule for quantum wires. J. Phys. A 32(4), 595–630 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Kuchment, P. (ed.): Quantum graphs and their applications. Special issue of Waves in Random Media, 14, n.1, 2004

  31. Kuchment P.: Quantum graphs. I. Some basic structures. Waves Random Media 14(1), S107–S128 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Pleijel Å.: Remarks on Courant’s nodal line theorem. Comm. Pure Appl. Math. 9, 543–550 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pokornyĭ Y.V., Pryadiev V.L., Al′-Obeĭd A.: On the oscillation of the spectrum of a boundary value problem on a graph. Mat. Zametki. 60(3), 468–470 (1996)

    MathSciNet  Google Scholar 

  34. Polterovich I.: Pleijel’s nodal domain theorem for free membranes. Proc. Amer. Math. Soc. 137(3), 1021–1024 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schapotschnikow P.: Eigenvalue and nodal properties on quantum graph trees. Waves in Random and Complex Media 16, 167–178 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Smilansky, U., Stöckmann, H.-J. (eds.): Nodal Patterns in Physics and Mathematics, Wittenberg 2006. The European Physical Journal - Special Topics, 145, 2007

  37. Sturm C.: Mémoire sur les équations différentielles linéaires du second ordre. J. Math. Pures Appl. 1, 106–186 (1836)

    Google Scholar 

  38. Sturm C.: Mémoire sur une classe d’équations à différences partielles. J. Math. Pures Appl. 1, 373–444 (1836)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Berkolaiko.

Additional information

Communicated by S. Zelditch

Rights and permissions

Reprints and permissions

About this article

Cite this article

Band, R., Berkolaiko, G., Raz, H. et al. The Number of Nodal Domains on Quantum Graphs as a Stability Index of Graph Partitions. Commun. Math. Phys. 311, 815–838 (2012). https://doi.org/10.1007/s00220-011-1384-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1384-9

Keywords

Navigation