Abstract
Gapped ground states of quantum spin systems have been referred to in the physics literature as being ‘in the same phase’ if there exists a family of Hamiltonians H(s), with finite range interactions depending continuously on \({s\in [0,1]}\), such that for each s, H(s) has a non-vanishing gap above its ground state and with the two initial states being the ground states of H(0) and H(1), respectively. In this work, we give precise conditions under which any two gapped ground states of a given quantum spin system that ’belong to the same phase’ are automorphically equivalent and show that this equivalence can be implemented as a flow generated by an s-dependent interaction which decays faster than any power law (in fact, almost exponentially). The flow is constructed using Hastings’ ‘quasi-adiabatic evolution’ technique, of which we give a proof extended to infinite-dimensional Hilbert spaces. In addition, we derive a general result about the locality properties of the effect of perturbations of the dynamics for quantum systems with a quasi-local structure and prove that the flow, which we call the spectral flow, connecting the gapped ground states in the same phase, satisfies a Lieb-Robinson bound. As a result, we obtain that, in the thermodynamic limit, the spectral flow converges to a co-cycle of automorphisms of the algebra of quasi-local observables of the infinite spin system. This proves that the ground state phase structure is preserved along the curve of models H(s), 0 ≤ s ≤ 1.
Similar content being viewed by others
References
Albanese C.: Unitary dressing transformations and exponential decay below threshold for quantum spin systems. I, II. Commun. Math. Phys. 134, 1–27 (1990)
Albanese C.: Unitary dressing transformations and exponential decay below threshold for quantum spin systems. III, IV. Commun. Math. Phys. 134, 237–272 (1990)
Amour L., Levy-Bruhl P., Nourrigat J.: Dynamics and Lieb-Robinson estimates for lattices of interacting anharmonic oscillators. Colloq. Math. 118, 609–648 (2010)
Baillie R., Borwein D., Borwein J.M.: Surprising Sinc Sums and Integrals. Am. Math. Mon. 115, 888–901 (2008)
Birman M.S., Solomyak M.: Double Operator Integrals in a Hilbert Space. Integr. Eq. Oper. Th. 47, 131–168 (2003)
Borgs C., Kotecký R., Ueltschi D.: Low temperature phase diagrams for quantum perturbations of classical spin systems. Commun. Math. Phys. 181, 409–446 (1996)
Bravyi S., Hastings M., Michalakis S.: Topological quantum order: stability under local perturbations. J. Math. Phys. 51, 093512 (2010)
Bravyi, S., Hastings, M.: A short proof of stability of topological order under local perturbations. http://arxiv.org/abs/1001.4363v1 [math-ph], 2010
Bravyi S., Hastings M.B., Verstraete F.: Lieb-Robinson Bounds and the Generation of Correlations and Topological Quantum Order. Phys. Rev. Lett. 97, 050401 (2006)
Chen X., Gu Z.-C., Wen X.-G.: Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B 82, 155138 (2010)
Chen X., Gu Z.-C., Wen X.-G.: Classification of Gapped Symmetric Phases in 1D Spin Systems. Phys. Rev. B 83, 035107 (2011)
Cramer, M., Serafini, A., Eisert, J.: Locality of dynamics in general harmonic quantum systems. In: Quantum information and many body quantum systems, Ericsson, M., Montangero, S. (eds.), CRM Series, no. 8. Pisa: Edizioni della Normale, 2008, pp. 51–72
Dagotto E., Rice T.M.: Surprises on the Way from One- to Two-Dimensional Quantum Magnets: The Ladder Materials. Science 271, 618–623 (1996)
Datta N., Fernández R., Fröhlich J.: Low-temperature phase diagrams of quantum lattice systems. I. Stability for quantum perturbations of classical systems with finitely-many ground states. J. Stat. Phys. 84, 455–534 (1996)
Datta N., Fernández R., Fröhlich J., Rey-Bellet L.: Low-temperature phase diagrams of quantum lattice systems. II. Convergent perturbation expansions and stability in systems with infinite degeneracy. Helv. Phys. Acta 69, 752–820 (1996)
Dziubańsky J., Hernández E.: Band-limited wavelets with subexponential decay. Canad. Math. Bull. 41, 398–403 (1998)
Fannes M., Nachtergaele B., Werner R.: Finitely Correlated States on Quantum Spin Chains. Commun. Math. Phys. 144, 443–490 (1992)
Hamza E., Michalakis S., Nachtergaele B., Sims R.: Approximating the ground state of gapped quantum spin systems. J. Math. Phys. 50, 095213 (2009)
Hastings M.: Lieb-Schultz-Mattis in higher dimensions. Phys. Rev. B 69, 104431 (2004)
Hastings M.: An area law for one dimensional quantum systems. J. Stat. Mech. 2007, P08024 (2007)
Hastings, M.B.: Quasi-adiabatic Continuation for Disordered Systems: Applications to Correlations, Lieb-Schultz-Mattis, and Hall Conductance. http://arxiv/org/abs/1001.5280v2 [math-ph], 2010
Hastings M., Koma T.: Spectral Gap and Exponential Decay of Correlations. Commun. Math. Phys. 265, 781–804 (2006)
Hastings, M., Michalakis, S.: Quantization of Hall conductance for interacting electrons without averaging assumptions. http://arxiv/org/abs/0911.4706v1 [math-ph], 2009
Hastings M., Wen X.: Quasi-adiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance. Phys. Rev. B. 72, 045141 (2005)
Ingham A.E.: A note on Fourier Transforms. J. London Math. Soc. 9, 29–32 (1934)
Kato T.: Perturbation Theory for Linear Operators. Springer, New York (1980)
Kennedy T.: Long range order in the anisotropic quantum ferromagnetic Heisenberg model. Commun. Math. Phys. 100, 447–462 (1985)
Kennedy T., Tasaki H.: Hidden symmetry breaking and the Haldane phase in S = 1 quantum spin chains. Commun. Math. Phys. 147, 431–484 (1992)
Kennedy T., Tasaki H.: Hidden Z 2 × Z 2 symmetry breaking in Haldane gap antiferromagnets. Phys. Rev. B 45, 304–307 (1992)
Kitaev A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003)
Laughlin R.B.: The Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations. Phys. Rev. Lett. 50, 1395 (1983)
Lieb E.H., Robinson D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)
Lieb E.H., Schultz T., Mattis D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407–466 (1961)
Matsui T.: Uniqueness of the translationally invariant ground state in quantum spin systems. Commun. Math. Phys. 126, 453–467 (1990)
Nachtergaele B.: The spectral gap for some quantum spin chains with discrete symmetry breaking. Commun. Math. Phys. 175, 565–606 (1996)
Nachtergaele B., Ogata Y., Sims R.: Propagation of Correlations in Quantum Lattice Systems. J. Stat. Phys. 124, 1–13 (2006)
Nachtergaele B., Raz H., Schlein B., Sims R.: Lieb-Robinson Bounds for Harmonic and Anharmonic Lattice Systems. Commun. Math. Phys. 286, 1073–1098 (2009)
Nachtergaele B., Schlein B., Sims R., Starr S., Zagrebnov V.: On the existence of the dynamics for anharmonic quantum oscillator systems. Rev. Math. Phys. 22, 207–231 (2010)
Nachtergaele B., Sims R.: Lieb-Robinson Bounds and the Exponential Clustering Theorem. Commun. Math. Phys. 265, 119–130 (2006)
Nachtergaele B., Sims R.: A multi-dimensional Lieb-Schultz-Mattis theorem. Commun. Math. Phys. 276, 437–472 (2007)
Nachtergaele, B., Sims, R.: Locality Estimates for Quantum Spin Systems. In: Sidoravicius, V. (ed.), New Trends in Mathematical Physics. Selected contributions of the XV th International Congress on Mathematical Physics, Berlin-Heidelberg-New York: Springer Verlag, 2009, pp. 591–614
Nachtergaele, B., Sims, R.: Lieb-Robinson Bounds in Quantum Many-Body Physics. In: Sims, R., Ueltschi, D. (eds), Entropy and the Quantum, Contemporary Mathematics, Volume 529, Providence, RI: Amer. Math. Soc., 2010, pp. 141–176
Nachtergaele, B., Scholz, V.B., Werner, R.F.: Local approximation of observables and commutator bounds. http://arxiv/org/abs/1103.5663v1 [math-ph], 2011
Osborne T.J.: Simulating adiabatic evolution of gapped spin systems. J. Phys. A. 75, 032321 (2007)
Prémont-Schwarz I., Hamma A., Klich I., Markopoulou-Kalamara F.: Lieb-Robinson bounds for commutator-bounded operators. Phys. Rev. A. 81, 040102 (2010)
Prémont-Schwarz I., Hnybida J.: Lieb-Robinson bounds with dependence on interaction strengths. Phys. Rev. A. 81, 062107 (2010)
Reed, M., Simon, B.: Fourier Analysis, Self-Adjointness. Methods of Modern Mathematical Physics, Vol. 2, London: Academic Press 1975
Sachdev, S.: Quantum phase transitions. Cambridge University Press 2000
Schuch N., Pérez-García D., Cirac I.: Classifying quantum phases using MPS and PEPS. Phys. Rev. B. 84, 165139 (2011)
Schuch N., Harrison S.K., Osborne T.J., Eisert J.: Information propagation for interacting particle systems. Phys. Rev. A. 84, 032309 (2011)
Tsui D.C., Stormer H.L., Gossard A.C.: Two-Dimensional Magnetotransport in the Extreme Quantum Limit. Phys. Rev. Lett. 48, 1559–1562 (1982)
Yarotsky D.: Ground states in relatively bounded quantum perturbations of classical lattice systems. Commun. Math. Phys. 261, 799–819 (2006)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M. Salmhofer
Copyright © 2011 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.
Rights and permissions
About this article
Cite this article
Bachmann, S., Michalakis, S., Nachtergaele, B. et al. Automorphic Equivalence within Gapped Phases of Quantum Lattice Systems. Commun. Math. Phys. 309, 835–871 (2012). https://doi.org/10.1007/s00220-011-1380-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-011-1380-0