Skip to main content
Log in

Automorphic Equivalence within Gapped Phases of Quantum Lattice Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Gapped ground states of quantum spin systems have been referred to in the physics literature as being ‘in the same phase’ if there exists a family of Hamiltonians H(s), with finite range interactions depending continuously on \({s\in [0,1]}\), such that for each s, H(s) has a non-vanishing gap above its ground state and with the two initial states being the ground states of H(0) and H(1), respectively. In this work, we give precise conditions under which any two gapped ground states of a given quantum spin system that ’belong to the same phase’ are automorphically equivalent and show that this equivalence can be implemented as a flow generated by an s-dependent interaction which decays faster than any power law (in fact, almost exponentially). The flow is constructed using Hastings’ ‘quasi-adiabatic evolution’ technique, of which we give a proof extended to infinite-dimensional Hilbert spaces. In addition, we derive a general result about the locality properties of the effect of perturbations of the dynamics for quantum systems with a quasi-local structure and prove that the flow, which we call the spectral flow, connecting the gapped ground states in the same phase, satisfies a Lieb-Robinson bound. As a result, we obtain that, in the thermodynamic limit, the spectral flow converges to a co-cycle of automorphisms of the algebra of quasi-local observables of the infinite spin system. This proves that the ground state phase structure is preserved along the curve of models H(s), 0 ≤ s ≤ 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albanese C.: Unitary dressing transformations and exponential decay below threshold for quantum spin systems. I, II. Commun. Math. Phys. 134, 1–27 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Albanese C.: Unitary dressing transformations and exponential decay below threshold for quantum spin systems. III, IV. Commun. Math. Phys. 134, 237–272 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Amour L., Levy-Bruhl P., Nourrigat J.: Dynamics and Lieb-Robinson estimates for lattices of interacting anharmonic oscillators. Colloq. Math. 118, 609–648 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baillie R., Borwein D., Borwein J.M.: Surprising Sinc Sums and Integrals. Am. Math. Mon. 115, 888–901 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Birman M.S., Solomyak M.: Double Operator Integrals in a Hilbert Space. Integr. Eq. Oper. Th. 47, 131–168 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borgs C., Kotecký R., Ueltschi D.: Low temperature phase diagrams for quantum perturbations of classical spin systems. Commun. Math. Phys. 181, 409–446 (1996)

    Article  ADS  MATH  Google Scholar 

  7. Bravyi S., Hastings M., Michalakis S.: Topological quantum order: stability under local perturbations. J. Math. Phys. 51, 093512 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  8. Bravyi, S., Hastings, M.: A short proof of stability of topological order under local perturbations. http://arxiv.org/abs/1001.4363v1 [math-ph], 2010

  9. Bravyi S., Hastings M.B., Verstraete F.: Lieb-Robinson Bounds and the Generation of Correlations and Topological Quantum Order. Phys. Rev. Lett. 97, 050401 (2006)

    Article  ADS  Google Scholar 

  10. Chen X., Gu Z.-C., Wen X.-G.: Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B 82, 155138 (2010)

    Article  ADS  Google Scholar 

  11. Chen X., Gu Z.-C., Wen X.-G.: Classification of Gapped Symmetric Phases in 1D Spin Systems. Phys. Rev. B 83, 035107 (2011)

    Article  ADS  Google Scholar 

  12. Cramer, M., Serafini, A., Eisert, J.: Locality of dynamics in general harmonic quantum systems. In: Quantum information and many body quantum systems, Ericsson, M., Montangero, S. (eds.), CRM Series, no. 8. Pisa: Edizioni della Normale, 2008, pp. 51–72

  13. Dagotto E., Rice T.M.: Surprises on the Way from One- to Two-Dimensional Quantum Magnets: The Ladder Materials. Science 271, 618–623 (1996)

    Article  ADS  Google Scholar 

  14. Datta N., Fernández R., Fröhlich J.: Low-temperature phase diagrams of quantum lattice systems. I. Stability for quantum perturbations of classical systems with finitely-many ground states. J. Stat. Phys. 84, 455–534 (1996)

    Article  ADS  MATH  Google Scholar 

  15. Datta N., Fernández R., Fröhlich J., Rey-Bellet L.: Low-temperature phase diagrams of quantum lattice systems. II. Convergent perturbation expansions and stability in systems with infinite degeneracy. Helv. Phys. Acta 69, 752–820 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Dziubańsky J., Hernández E.: Band-limited wavelets with subexponential decay. Canad. Math. Bull. 41, 398–403 (1998)

    Article  MathSciNet  Google Scholar 

  17. Fannes M., Nachtergaele B., Werner R.: Finitely Correlated States on Quantum Spin Chains. Commun. Math. Phys. 144, 443–490 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Hamza E., Michalakis S., Nachtergaele B., Sims R.: Approximating the ground state of gapped quantum spin systems. J. Math. Phys. 50, 095213 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  19. Hastings M.: Lieb-Schultz-Mattis in higher dimensions. Phys. Rev. B 69, 104431 (2004)

    Article  ADS  Google Scholar 

  20. Hastings M.: An area law for one dimensional quantum systems. J. Stat. Mech. 2007, P08024 (2007)

    Article  MathSciNet  Google Scholar 

  21. Hastings, M.B.: Quasi-adiabatic Continuation for Disordered Systems: Applications to Correlations, Lieb-Schultz-Mattis, and Hall Conductance. http://arxiv/org/abs/1001.5280v2 [math-ph], 2010

  22. Hastings M., Koma T.: Spectral Gap and Exponential Decay of Correlations. Commun. Math. Phys. 265, 781–804 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Hastings, M., Michalakis, S.: Quantization of Hall conductance for interacting electrons without averaging assumptions. http://arxiv/org/abs/0911.4706v1 [math-ph], 2009

  24. Hastings M., Wen X.: Quasi-adiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance. Phys. Rev. B. 72, 045141 (2005)

    Article  ADS  Google Scholar 

  25. Ingham A.E.: A note on Fourier Transforms. J. London Math. Soc. 9, 29–32 (1934)

    Article  Google Scholar 

  26. Kato T.: Perturbation Theory for Linear Operators. Springer, New York (1980)

    MATH  Google Scholar 

  27. Kennedy T.: Long range order in the anisotropic quantum ferromagnetic Heisenberg model. Commun. Math. Phys. 100, 447–462 (1985)

    Article  ADS  Google Scholar 

  28. Kennedy T., Tasaki H.: Hidden symmetry breaking and the Haldane phase in S = 1 quantum spin chains. Commun. Math. Phys. 147, 431–484 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Kennedy T., Tasaki H.: Hidden Z 2 × Z 2 symmetry breaking in Haldane gap antiferromagnets. Phys. Rev. B 45, 304–307 (1992)

    Article  ADS  Google Scholar 

  30. Kitaev A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Laughlin R.B.: The Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations. Phys. Rev. Lett. 50, 1395 (1983)

    Article  ADS  Google Scholar 

  32. Lieb E.H., Robinson D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  33. Lieb E.H., Schultz T., Mattis D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407–466 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Matsui T.: Uniqueness of the translationally invariant ground state in quantum spin systems. Commun. Math. Phys. 126, 453–467 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Nachtergaele B.: The spectral gap for some quantum spin chains with discrete symmetry breaking. Commun. Math. Phys. 175, 565–606 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Nachtergaele B., Ogata Y., Sims R.: Propagation of Correlations in Quantum Lattice Systems. J. Stat. Phys. 124, 1–13 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Nachtergaele B., Raz H., Schlein B., Sims R.: Lieb-Robinson Bounds for Harmonic and Anharmonic Lattice Systems. Commun. Math. Phys. 286, 1073–1098 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Nachtergaele B., Schlein B., Sims R., Starr S., Zagrebnov V.: On the existence of the dynamics for anharmonic quantum oscillator systems. Rev. Math. Phys. 22, 207–231 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nachtergaele B., Sims R.: Lieb-Robinson Bounds and the Exponential Clustering Theorem. Commun. Math. Phys. 265, 119–130 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Nachtergaele B., Sims R.: A multi-dimensional Lieb-Schultz-Mattis theorem. Commun. Math. Phys. 276, 437–472 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Nachtergaele, B., Sims, R.: Locality Estimates for Quantum Spin Systems. In: Sidoravicius, V. (ed.), New Trends in Mathematical Physics. Selected contributions of the XV th International Congress on Mathematical Physics, Berlin-Heidelberg-New York: Springer Verlag, 2009, pp. 591–614

  42. Nachtergaele, B., Sims, R.: Lieb-Robinson Bounds in Quantum Many-Body Physics. In: Sims, R., Ueltschi, D. (eds), Entropy and the Quantum, Contemporary Mathematics, Volume 529, Providence, RI: Amer. Math. Soc., 2010, pp. 141–176

  43. Nachtergaele, B., Scholz, V.B., Werner, R.F.: Local approximation of observables and commutator bounds. http://arxiv/org/abs/1103.5663v1 [math-ph], 2011

  44. Osborne T.J.: Simulating adiabatic evolution of gapped spin systems. J. Phys. A. 75, 032321 (2007)

    Google Scholar 

  45. Prémont-Schwarz I., Hamma A., Klich I., Markopoulou-Kalamara F.: Lieb-Robinson bounds for commutator-bounded operators. Phys. Rev. A. 81, 040102 (2010)

    Article  ADS  Google Scholar 

  46. Prémont-Schwarz I., Hnybida J.: Lieb-Robinson bounds with dependence on interaction strengths. Phys. Rev. A. 81, 062107 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  47. Reed, M., Simon, B.: Fourier Analysis, Self-Adjointness. Methods of Modern Mathematical Physics, Vol. 2, London: Academic Press 1975

  48. Sachdev, S.: Quantum phase transitions. Cambridge University Press 2000

  49. Schuch N., Pérez-García D., Cirac I.: Classifying quantum phases using MPS and PEPS. Phys. Rev. B. 84, 165139 (2011)

    Article  ADS  Google Scholar 

  50. Schuch N., Harrison S.K., Osborne T.J., Eisert J.: Information propagation for interacting particle systems. Phys. Rev. A. 84, 032309 (2011)

    Article  ADS  Google Scholar 

  51. Tsui D.C., Stormer H.L., Gossard A.C.: Two-Dimensional Magnetotransport in the Extreme Quantum Limit. Phys. Rev. Lett. 48, 1559–1562 (1982)

    Article  ADS  Google Scholar 

  52. Yarotsky D.: Ground states in relatively bounded quantum perturbations of classical lattice systems. Commun. Math. Phys. 261, 799–819 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Nachtergaele.

Additional information

Communicated by M. Salmhofer

Copyright © 2011 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachmann, S., Michalakis, S., Nachtergaele, B. et al. Automorphic Equivalence within Gapped Phases of Quantum Lattice Systems. Commun. Math. Phys. 309, 835–871 (2012). https://doi.org/10.1007/s00220-011-1380-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1380-0

Keywords

Navigation