Skip to main content
Log in

Quantum Transport in Crystals: Effective Mass Theorem and K·P Hamiltonians

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper the effective mass approximation and the k·p multi-band models, describing quantum evolution of electrons in a crystal lattice, are discussed. Electrons are assumed to move in both a periodic potential and a macroscopic one. The typical period \({\epsilon}\) of the periodic potential is assumed to be very small, while the macroscopic potential acts on a much bigger length scale. Such homogenization asymptotic is investigated by using the envelope-function decomposition of the electron wave function. If the external potential is smooth enough, the k·p and effective mass models, well known in solid-state physics, are proved to be close (in the strong sense) to the exact dynamics. Moreover, the position density of the electrons is proved to converge weakly to its effective mass approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert J.H.: Genericity of simple eigenvaues for elliptic PDE’s. Proc. Amer. Math. Soc. 48(2), 413–418 (1975)

    MathSciNet  MATH  Google Scholar 

  2. Allaire G., Conca C.: Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl. (9) 77(2), 153–208 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allaire G., Capdeboscq Y., Piatnitski A., Siess V., Vanninathan M.: Homogenization of periodic systems with large potentials. Arch. Rat. Mech. Anal. 174, 179–220 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Allaire G., Piatnitski A.: Homogenization of the Schrödinger equation and effective mass theorems. Commun. Math. Phys. 258, 1–22 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Allaire G., Vanninathan M.: Homogenization of the Schrödinger equation with a time oscillating potential. Dis. Contin. Dyn. Syst. Ser. B 6, 1–16 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Allaire, G.: Periodic homogenization and effective mass theorems for the Schrödinger equation. In: Ben Abdallah, N., Frosali, G. (eds.) Quantum transport. Modelling, analysis and asymptotics. Lecture Notes in Math. 1946. Berlin: Springer, 2008

  7. Ashcroft N.W., Mermin N.D.: Solid State Physics. Saunders College Publishing, Philadelphia, PA (1976)

    Google Scholar 

  8. Bastard G.: Wave mechanics applied to semiconductor heterostructures. Wiley Interscience, New York (1990)

    Google Scholar 

  9. Berezin F.A., Shubin M.A.: The Schrödinger Equation. Kluwer, Dordrecht (1991)

    Book  MATH  Google Scholar 

  10. Burt M.G.: The justification for applying the effective mass approximation to microstructures. J. Phys. Condens. Matter 4, 6651–6690 (1992)

    Article  ADS  Google Scholar 

  11. Fendt-Delebecque F., Méhats F.: An effective mass theorem for the bidimensional electron gas in a strong magnetic field. Commun. Math. Phys. 292, 829–870 (2009)

    Article  ADS  Google Scholar 

  12. Giusti E.: Direct methods in the calculus of variations. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  13. Hagedorn G.A., Joye A.: A time-dependent Born-Oppenheimer approximation with exponentially small error estimates. Commun. Math. Phys. 223, 583–626 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Kato, T.: Perturbation Theory for Linear Operators (Second edition). Berlin: Springer-Verlag, 1980

  15. Kuchment, P.: Floquet theory for partial differential equations. In: Operator Theory: Advances and Applications, 60. Basel: Birkhäuser Verlag, 1993

  16. Luttinger J.M., Kohn W.: Motion of electrons and holes in perturbed periodic fields. Phys. Rev. 97, 869–882 (1955)

    Article  ADS  MATH  Google Scholar 

  17. Panati G., Spohn H., Teufel S.: The time-dependent Born-Oppenheimer approximation. M2AN Math. Model. Numer. Anal. 41, 297–314 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Poupaud F., Ringhofer C.: Semi-classical limits in a crystal with exterior potentials and effective mass theorems. Commun. Part. Diff. Eq. 21, 1897–1918 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Reed M., Simon B.: Methods of Modern Mathematical Physics, I - Functional Analysis. Academic Press, New York (1972)

    Google Scholar 

  20. Reed M., Simon B.: Methods of Modern Mathematical Physics, IV - Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  21. Spohn H., Teufel S.: Adiabatic decoupling and time-dependent Born-Oppenheimer theory. Commun. Math. Phys. 224, 113–132 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Uhlenbeck K.: Generic properties of eigenfunctions. Amer. J. Math. 98(4), 1059–1078 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  23. Teufel S.: Adiabatic Perturbation Theory in Quantum Dynamics. Springer-Verlag, Berlin (2003)

    Book  MATH  Google Scholar 

  24. Wenckebach T.: Essentials of Semiconductor Physics. Wiley, Chichester (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Barletti.

Additional information

Communicated by P. Constantin

After the first submission of the manuscript Naoufel Ben Abdallah unexpectedly left us. I would like to express here my feelings of gratitude for his precious friendship and for the extraordinary scientific enrichment he offered me at every occasion (L.B.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barletti, L., Ben Abdallah, N. Quantum Transport in Crystals: Effective Mass Theorem and K·P Hamiltonians. Commun. Math. Phys. 307, 567–607 (2011). https://doi.org/10.1007/s00220-011-1344-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1344-4

Keywords

Navigation