Abstract
Let (X jk ) j,k ≥ 1 be i.i.d. complex random variables such that |X jk | is in the domain of attraction of an α-stable law, with 0 < α < 2. Our main result is a heavy tailed counterpart of Girko’s circular law. Namely, under some additional smoothness assumptions on the law of X jk , we prove that there exist a deterministic sequence a n ~ n 1/α and a probability measure μ α on \({\mathbb{C}}\) depending only on α such that with probability one, the empirical distribution of the eigenvalues of the rescaled matrix \({(a_n^{-1}X_{jk})_{1\leq j,k\leq n}}\) converges weakly to μ α as n → ∞. Our approach combines Aldous & Steele’s objective method with Girko’s Hermitization using logarithmic potentials. The underlying limiting object is defined on a bipartized version of Aldous’ Poisson Weighted Infinite Tree. Recursive relations on the tree provide some properties of μ α . In contrast with the Hermitian case, we find that μ α is not heavy tailed.
Similar content being viewed by others
References
Aldous D.: Asymptotics in the random assignment problem. Probab. Th. Rel. Fields 93(4), 507– 534 (1982)
Aldous D., Lyons R.: Processes on unimodular random networks. Electron. J. Probab 12(54), 1454–1508 (2007) (electronic)
Aldous, D., Steele, J.M.: The objective method: probabilistic combinatorial optimization and local weak convergence. Probability on discrete structures, Encyclopaedia Math. Sci., Vol. 110, Berlin: Springer, 2004, pp. 1–72
Bai Z.D.: Circular law. Ann. Probab. 25(1), 494–529 (1997)
Bai, Z.D., Silverstein, J.W.: Spectral Analysis of Large Dimensional Random Matrices. Mathematics Monograph Series 2, Beijing: Science Press, 2006
Belinschi S., Dembo A., Guionnet A.: Spectral measure of heavy tailed band and covariance random matrices. Commun. Math. Phys. 289(3), 1023–1055 (2009)
Ben Arous G., Guionnet A.: The spectrum of heavy tailed random matrices. Commun. Math. Phys. 278(3), 715–751 (2008)
Benjamini I., Schramm O.: Recurrence of distributional limits of finite planar graphs. Electron. J. Probab 6(23), 13 (2001) (electronic)
Bingham N.H., Goldie C.M., Teugels J.L.: Regular variation. Encyclopedia of Mathematics and its Applications, Vol. 27. Cambridge University Press, Cambridge (1989)
Bordenave Ch., Caputo P., Chafaï D.: Spectrum of large random reversible Markov chains: two examples. ALEA Lat. Am. J. Probab. Math. Stat. 7, 41–64 (2010)
Bordenave, Ch., Caputo, P., Chafaï, D.: Spectrum of large random reversible Markov chains: heavy tailed weigths on the complete graph. http://arXiv.org/abs/0903.3528v4 Ann. Prob. 39(4), 1544–1590 (2011).
Bordenave, Ch., Caputo, P., Chafaï, D.: Circular Law Theorem for Random Markov Matrices. Prob. Th. Rel. Fields, doi:10.1007/s00440-010-0336-1, 2011
Bordenave Ch., Lelarge M., Salez J.: The rank of diluted random graphs. Ann. Prob. 39(3), 1097–1121 (2011)
Bouchaud J., Cizeau P.: Theory of Lévy matrices. Phys. Rev. E 3, 1810–1822 (1994)
Brown, L.G.: Lidskiĭ’s theorem in the type II case. In: Geometric methods in operator algebras (Kyoto, 1983), Pitman Res. Notes Math. Ser., Vol. 123, Harlow: Longman Sci. Tech., 1986, pp. 1–35
Chafaï D.: Aspects of large random Markov kernels. Stochastics 81(3-4), 415–429 (2009)
Chafaï D.: Circular law for noncentral random matrices. J. Theoret. Probab. 23(4), 945–950 (2010)
Chafaï D.: The Dirichlet Markov ensemble. J. Multivariate Anal. 101(3), 555–567 (2010)
Dozier R.B., Silverstein J.W.: Analysis of the limiting spectral distribution of large dimensional information-plus-noise type matrices. J. Multivariate Anal. 98(6), 1099–1122 (2007)
Dozier R.B., Silverstein J.W.: On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices. J. Multivariate Anal. 98(4), 678–694 (2007)
Edelman A.: The probability that a random real Gaussian matrix has k real eigenvalues, related distributions, and the circular law. J. Multivariate Anal. 60(2), 203–232 (1997)
Feinberg J., Zee A.: Non-Hermitian random matrix theory: Method of Hermitian reduction. Nucl. Phys. B 504(3), 579–608 (1997)
Feller, W.: An introduction to probability theory and its applications. Vol. II. Second edition, New York: John Wiley & Sons Inc., 1971
Girko V.L.: The circular law. Teor. Veroyatnost. i Primenen. 29(4), 669–679 (1984)
Girko V.L.: Strong circular law. Random Oper. Stochastic Eqs. 5(2), 173–196 (1997)
Girko V.L.: The circular law. Twenty years later. III. Random Oper. Stochastic Eqs. 13(1), 53–109 (2005)
Goldsheid I.Y., Khoruzhenko B.A.: The Thouless formula for random non-Hermitian Jacobi matrices. Israel J. Math. 148, 331–346 (2005)
Götze F., Tikhomirov A.: The Circular Law for Random Matrices. Ann. Probab. 38(4), 1444–1491 (2010)
Gudowska-Nowak E., Jarosz A., Nowak M., Pappe G.: Towards non-Hermitian random Lévy matrices. Acta Physica Polonica B 38(13), 4089–4104 (2007)
Guntuboyina A., Leeb H.: Concentration of the spectral measure of large Wishart matrices with dependent entries. Electron. Commun. Probab. 14, 334–342 (2009)
Haagerup U., Schultz H.: Brown measures of unbounded operators affiliated with a finite von Neumann algebra. Math. Scand. 100(2), 209–263 (2007)
Horn, R.A., Johnson, Ch.R.: Topics in matrix analysis. Cambridge: Cambridge University Press, 1994 (corrected reprint of the 1991 original)
Hwang, C.-R.: A brief survey on the spectral radius and the spectral distribution of large random matrices with i.i.d. entries. In: Random matrices and their applications (Brunswick, Maine, 1984), Contemp. Math., Vol. 50, Providence, RI: Amer. Math. Soc., 1986, pp. 145–152
Ledoux, M.: The concentration of measure phenomenon. Mathematical Surveys and Monographs, Vol. 89, Providence, RI: Amer. Math. Soc., 2001
LePage R., Woodroofe M., Zinn J.: Convergence to a stable distribution via order statistics. Ann. Probab. 9(4), 624–632 (1981)
Lyons R.: Identities and Inequalities for Tree Entropy. Combin. Probab. Comput. 19(2), 303–313 (2010)
Marchenko V.A., Pastur L.A.: The distribution of eigenvalues in sertain sets of random matrices. Mat. Sb. 72, 507–536 (1967)
McDiarmid, C.: On the method of bounded differences. Surveys in combinatorics, (Norwich, 1989), London Math. Soc. Lecture Note Ser., Vol. 141, Cambridge: Cambridge Univ. Press, 1989, pp. 148–188
Mehta M.L.: Random matrices and the statistical theory of energy levels. Academic Press, New York (1967)
Pan G.M., Zhou W.: Circular law, extreme singular values and potential theory. J. Multivar. Anal. 101(3), 645–656 (2010)
Panchenko D., Talagrand M.: On one property of Derrida-Ruelle cascades. C. R. Math. Acad. Sci. Paris 345(11), 653–656 (2007)
Reed M., Simon B.: Methods of modern mathematical physics I Second ed. Academic Press Inc, New York (1980) [Harcourt Brace Jovanovich Publishers]
Rogers T.: Universal sum and product rules for random matrices. J. Math. Phys. 51, 093304 (2010)
Rogers T., Castillo I.P.: Cavity approach to the spectral density of non-Hermitian sparse matrices. Phys. Rev. E 79, 012101 (2009)
Rudelson M., Vershynin R.: The Littlewood-Offord problem and invertibility of random matrices. Adv. Math. 218(2), 600–633 (2008)
Talagrand M.: Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publ. Math. 81(1), 73–205 (1995)
Tao, T.: Outliers in the spectrum of iid matrices with bounded rank perturbations. http://arXiv.org/abs/1012.4818v3 [math.PR], 2011
Tao T., Vu V.: Random matrices: the circular law. Commun. Contemp. Math. 10(2), 261–307 (2008)
Tao T., Vu V.: Smooth analysis of the condition number and the least singular value. Math. Comp. 79(272), 2333–2352 (2010)
Tao T., Vu V.: Random matrices: universality of ESDs and the circular law, with an appendix by Manjunath Krishnapur. Ann. Probab 38(5), 2023–2065 (2010)
Thompson R.C.: The behavior of eigenvalues and singular values under perturbations of restricted rank. Linear Algebra and Appl 13(1/2), 69–78 (1976) (collection of articles dedicated to Olga Taussky Todd)
Wachter K.W.: The strong limits of random matrix spectra for sample matrices of independent elements. Ann. Prob. 6(1), 1–18 (1978)
Weyl H.: Inequalities between the two kinds of eigenvalues of a linear transformation. Proc. Nat. Acad. Sci. U. S. A. 35, 408–411 (1949)
Yin Y.Q.: Limiting spectral distribution for a class of random matrices. J. Multivariate Anal. 20(1), 50–68 (1986)
Zhan, X.: Matrix inequalities. Lecture Notes in Mathematics, Vol. 1790, Berlin: Springer-Verlag, 2002
Zolotarev, V.M.: One-dimensional stable distributions. In: Translations of Mathematical Monographs, Vol. 65, Providence, RI: Amer. Math. Soc., 1986, Translated from the Russian by H. H. McFaden, Translation edited by Ben Silver
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by P. Forrester
Rights and permissions
About this article
Cite this article
Bordenave, C., Caputo, P. & Chafaï, D. Spectrum of Non-Hermitian Heavy Tailed Random Matrices. Commun. Math. Phys. 307, 513–560 (2011). https://doi.org/10.1007/s00220-011-1331-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-011-1331-9