Skip to main content
Log in

A Mechanical Model for Fourier’s Law of Heat Conduction

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Nonequilibrium statistical mechanics close to equilibrium is a physically satisfactory theory centered on the linear response formula of Green-Kubo. This formula results from a formal first order perturbation calculation without rigorous justification. A rigorous derivation of Fourier’s law for heat conduction from the laws of mechanics remains thus a major unsolved problem. In this note we present a deterministic mechanical model of a heat-conducting chain with nontrivial interactions, where kinetic energy fluctuations at the nodes of the chain are removed. In this model the derivation of Fourier’s law can proceed rigorously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aschbacher, W., Jakšić, V., Pautrat, Y., Pillet, C.-A.: Introduction to nonequilibrium quantum statistical mechanics. In: Open Quantum Systems III Recent developments. Lecture Notes in Mathematics 1882, Berlin: Springer, 2006, pp. 1–66

  2. Baladi, V., Smania, D.: Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps. To be published, available at http://www.mitlag-letter.se/preprints/files/IML-0910503.pdf, 2010

  3. Bonatti C., Diaz L., Viana M.: Dynamics beyond uniform hyperbolicity. Springer, Berlin (2005)

    MATH  Google Scholar 

  4. Bonetto, F., Lebowitz, J., Rey-Bellet, L.: Fourier’s law: a challenge for theorists. In: Mathematical Physics 2000, Fokas A., Grigoryan A., Kibble T., Zegarlinsky B. (eds), Imperial College, London, 2000, pp. 128–150

  5. Bonetto F., Lebowitz J.L., Lukkarinen J.: Fourier’s law for a harmonic crystal with self-consistent stochastic reservoirs. J. Stat. Phys. 116, 783–813 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bonetto F., Lebowitz J.L., Lukkarinen J., Olla S.: The heat conduction and entropy production in anharmonic crystals with self-consistent stochastic reservoirs. J. Stat. Phys. 134, 1097–1119 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Butterley O., Liverani C.: Smooth Anosov flows: correlation spectra and stability. J. Mod. Dyn. 1, 301–322 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dolgopyat D.: Decay of correlations in Anosov flows. Ann. of Math. 147, 357–390 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dolgopyat, D.: Prevalence of rapid mixing in hyperbolic flows. Ergod. Th. and Dynam. Syst. 18, 1097-1114 (1998); Prevalence of rapid mixing-II: topological prevalence. Ergod. Th. and Dynam. Syst. 20, 1045–1059 (2000)

    Google Scholar 

  10. Dolgopyat D.: On differentiability of SRB states for partially hyperbolic systems. Invent. Math. 155, 389–449 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Dolgopyat, D., Liverani, C.: Energy transfer in a fast-slow Hamiltonian system. Preprint, available at http://arxiv.org/abs/1010.3972v1 [math-ph], 2010

  12. Eckmann J.-P., Pillet C.-A., Rey-Bellet L.: Non-equilibrium statistical mechanics of anharmonic chains coupled to two baths at different temperatures. Commun. Math. Phys. 201, 657–697 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Eckmann J.-P., Young L.-S.: Temperature profiles in Hamiltonian heat conduction. Europhys. Lett. 68, 790–796 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Eckmann J.-P., Young L.-S.: Nonequilibrium energy profiles in Hamiltonian for a class of 1-D models. Commun. Math. Phys. 262, 237–267 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Evans D.J., Morriss G.P.: Statistical mechanics of nonequilibrium fluids. Academic Press, New York (1990)

    Google Scholar 

  16. Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Letters 74, 2694–2697 (1995); Dynamical ensembles in stationary states. J. Stat. Phys. 80, 931–970 (1995)

    Google Scholar 

  17. Hirsch, M., Pugh, C.C., Shub, M.: Invariant manifolds. Lect. Notes in Math. 583, Berlin: Springer, 1977

  18. Hoover, W.G.: Molecular dynamics. Lecture Notes in Physics 258. Heidelberg: Springer, 1986

  19. Katok A., Knieper G., Pollicott M., Weiss H.: Differentiability and analyticity of topological entropy for Anosov and geodesic flows. Invent. Math. 98, 581–597 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Pesin Ya.B., Sinai Ya.G.: Gibbs measures for partially hyperbolic attractors. Ergod. Th. and Dynam. Syst. 2, 417–438 (1982)

    MathSciNet  MATH  Google Scholar 

  21. Ruelle, D.: Differentiation of SRB states. Commun. Math. Phys. 187, 227–241 (1997); Correction and complements. Commun. Math. Phys. 234, 185–190 (2003)

    Google Scholar 

  22. Ruelle D.: Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J. Stat. Phys. 95, 393–468 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Ruelle D.: Differentiation of SRB states for hyperbolic flows. Ergod. Theor. Dynam. Syst. 28, 613–631 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ruelle D.: Singularities of the susceptibility of an SRB measure in the presence of stable-unstable tangencies. Phil. Trans. R. Soc. A 369, 482–493 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Kampen N.G.: The case against linear response theory. Phys. Norv. 5, 279–284 (1971)

    Google Scholar 

  26. Young L.-S.: What are SRB measures, and which dynamical systems have them?. J. Stat. Phys. 108, 733–754 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ruelle.

Additional information

Communicated by G. Gallavotti

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruelle, D. A Mechanical Model for Fourier’s Law of Heat Conduction. Commun. Math. Phys. 311, 755–768 (2012). https://doi.org/10.1007/s00220-011-1304-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1304-z

Keywords

Navigation