Faithful Squashed Entanglement

Abstract

Squashed entanglement is a measure for the entanglement of bipartite quantum states. In this paper we present a lower bound for squashed entanglement in terms of a distance to the set of separable states. This implies that squashed entanglement is faithful, that is, it is strictly positive if and only if the state is entangled.

We derive the lower bound on squashed entanglement from a lower bound on the quantum conditional mutual information which is used to define squashed entanglement. The quantum conditional mutual information corresponds to the amount by which strong subadditivity of von Neumann entropy fails to be saturated. Our result therefore sheds light on the structure of states that almost satisfy strong subadditivity with equality. The proof is based on two recent results from quantum information theory: the operational interpretation of the quantum mutual information as the optimal rate for state redistribution and the interpretation of the regularised relative entropy of entanglement as an error exponent in hypothesis testing.

The distance to the set of separable states is measured in terms of the LOCC norm, an operationally motivated norm giving the optimal probability of distinguishing two bipartite quantum states, each shared by two parties, using any protocol formed by local quantum operations and classical communication (LOCC) between the parties. A similar result for the Frobenius or Euclidean norm follows as an immediate consequence.

The result has two applications in complexity theory. The first application is a quasipolynomial-time algorithm solving the weak membership problem for the set of separable states in LOCC or Euclidean norm. The second application concerns quantum Merlin-Arthur games. Here we show that multiple provers are not more powerful than a single prover when the verifier is restricted to LOCC operations thereby providing a new characterisation of the complexity class QMA.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Ohya M., Petz D.: Quantum Entropy and Its Use. Springer-Verlag, Berlin-Heidelberg-New York (2004)

    Google Scholar 

  2. 2

    Lieb E.H., Ruskai M.B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14, 1938 (1973)

    MathSciNet  ADS  Article  Google Scholar 

  3. 3

    Hayden P., Jozsa R., Petz D., Winter A.: Structure of states which satisfy strong subadditivity of quantum entropy with equality. Commun. Math. Phys. 246, 359 (2004)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  4. 4

    Ibinson B., Linden N., Winter A.: Robustness of quantum Markov chains. Commun. Math. Phys. 277, 289 (2008)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  5. 5

    Werner R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    ADS  Article  Google Scholar 

  6. 6

    Christandl M., Winter A.: “Squashed entanglement”: an additive entanglement measure. J. Math. Phys. 45, 829 (2004)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  7. 7

    Tucci, R.R.: Quantum entanglement and conditional information transmission. http://arxiv.org/abs/quant-ph/9909041v2, 1999

  8. 8

    Tucci, R.R.: Entanglement of distillation and conditional mutual information. http://arxiv.org/abs/quant-ph/0202144v2 2002

  9. 9

    Christandl, M.: The Structure of Bipartite Quantum States - Insights from Group Theory and Cryptography. PhD thesis, Cambridge University, 2006

  10. 10

    Christandl M., Schuch N., Winter A.: Highly entangled states with almost no secrecy. Phys. Rev. Lett. 104, 240405 (2010)

    MathSciNet  ADS  Article  Google Scholar 

  11. 11

    Koashi M., Winter A.: Monogamy of entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)

    MathSciNet  ADS  Article  Google Scholar 

  12. 12

    Peres A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  13. 13

    Horodecki M., Horodecki P., Horodecki R.: Separability of mixed states: Necessary and sufficient conditions. Phys. Lett. A 223, 1 (1996)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  14. 14

    Horodecki M., Horodecki P., Horodecki R.: Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature?. Phys. Rev. Lett. 80, 5239 (1998)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  15. 15

    Horodecki R., Horodecki P., Horodecki M., Horodecki K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  16. 16

    Coffman V., Kundu J., Wootters W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    ADS  Article  Google Scholar 

  17. 17

    Matthews W., Wehner S., Winter A.: Distinguishability of quantum states under restricted families of measurements with an application to quantum data hiding. Commun. Math. Phys. 291, 813 (2009)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  18. 18

    Bennett C.H., DiVincenzo D.P., Smolin J.A., Wootters W.K.: Mixed state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    MathSciNet  ADS  Article  Google Scholar 

  19. 19

    Rains E.M.: Rigorous treatment of distillable entanglement. Phys. Rev. A 60, 173 (1999)

    MathSciNet  ADS  Article  Google Scholar 

  20. 20

    Devetak I., Winter A.: Distillation of secret key and entanglement from quantum states. Proc. Roy. Soc. Lond. Ser. A 461, 207 (2004)

    MathSciNet  ADS  Google Scholar 

  21. 21

    Horodecki K., Horodecki M., Horodecki P., Oppenheim J.: Secure key from bound entanglement. Phys. Rev. Lett. 94, 160502 (2005)

    MathSciNet  ADS  Article  Google Scholar 

  22. 22

    Hayden P., Horodecki M., Terhal B.M.: The asymptotic entanglement cost of preparing a quantum state. J. Phys. A 34, 6891 (2001)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  23. 23

    Vedral V., Plenio M.B., Rippin M.A., Knight P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  24. 24

    Vedral V., Plenio M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619 (1998)

    ADS  Article  Google Scholar 

  25. 25

    Vidal G., Werner R.F.: A computable measure of entanglement. Phys. Rev. A 65, 032314 (2001)

    ADS  Article  Google Scholar 

  26. 26

    Yang D., Horodecki M., Horodecki R., Synak-Radtke B.: Irreversibility for all bound entangled states. Phys. Rev. Lett. 95, 190501 (2005)

    MathSciNet  ADS  Article  Google Scholar 

  27. 27

    Brandão F.G.S.L., Plenio M.B.: A generalization of quantum Stein’s lemma. Commun. Math. Phys. 295, 791 (2010)

    ADS  Article  MATH  Google Scholar 

  28. 28

    Plenio M.B.: Logarithmic negativity: A full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005)

    MathSciNet  ADS  Article  Google Scholar 

  29. 29

    Alicki R., Fannes M.: Continuity of quantum conditional information. J. Phys. A: Math. Gen. 37, L55 (2004)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  30. 30

    Donald M.J., Horodecki M.: Continuity of relative entropy of entanglement. Phys. Lett. A 264, 257 (1999)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  31. 31

    Donald M.J., Horodecki M., Rudolph O.: The uniqueness theorem for entanglement measures. J. Math. Phys. 43, 4252 (2002)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  32. 32

    Shor P.W.: Equivalence of additivity questions in quantum information theory. Commun. Math. Phys. 246, 453 (2003)

    MathSciNet  ADS  Article  Google Scholar 

  33. 33

    Hastings M.B.: Superadditivity of communication capacity using entangled inputs. Nature Physics 5, 255 (2009)

    ADS  Article  Google Scholar 

  34. 34

    Vollbrecht K.G.H., Werner R.F.: Entanglement measures under symmetry. Phys. Rev. A 64, 062307 (2001)

    ADS  Article  Google Scholar 

  35. 35

    Maurer U.M., Wolf S.: Unconditionally secure key agreement and the intrinsic conditional information. IEEE Trans. Inform. Theory 2, 499 (1999)

    MathSciNet  Article  Google Scholar 

  36. 36

    Christandl, M., Renner, R., Wolf, S.: A property of the intrinsic mutual information. In: Proc. 2003 IEEE Int. Symp. Inform. Theory, 2003, p. 258

  37. 37

    Devetak I., Yard J.: Exact cost of redistributing quantum states. Phys. Rev. Lett 100, 230501 (2008)

    ADS  Article  Google Scholar 

  38. 38

    Yard J., Devetak I.: Optimal quantum source coding with quantum information at the encoder and decoder. IEEE Trans. Inform. Theory 55, 5339 (2009)

    MathSciNet  Article  Google Scholar 

  39. 39

    Oppenheim, J.: A paradigm for entanglement theory based on quantum communication. http://arxiv.org/abs/0801.0458v1 [quantph], 2008

  40. 40

    Hudson R.L., Moody G.R.: Locally normal symmetric states and an analogue of de Finetti’s theorem. Z. Wahrschein. verw. Geb. 33, 343 (1976)

    MathSciNet  Article  MATH  Google Scholar 

  41. 41

    Størmer E.: Symmetric states of infinite tensor products of C*-algebras. J. Funct. Anal. 3, 48 (1969)

    Article  Google Scholar 

  42. 42

    Raggio G.A., Werner R.F.: Quantum statistical mechanics of general mean field systems. Helv. Phys. Acta. 62, 980 (1989)

    MathSciNet  Google Scholar 

  43. 43

    Werner R.F.: An application of Bell’s inequalities to a quantum state extension problem. Lett. Math. Phys. 17, 359 (1989)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  44. 44

    König R., Renner R.: A de Finetti representation for finite symmetric quantum states. J. Math. Phys. 46, 122108 (2005)

    MathSciNet  ADS  Article  Google Scholar 

  45. 45

    Christandl M., König R., Mitchison G., Renner R.: One-and-a-half quantum de Finetti theorems. Commun. Math. Phys. 273, 473 (2007)

    ADS  Article  MATH  Google Scholar 

  46. 46

    Virmani S., Plenio M.B.: Construction of extremal local positive operator-valued measures under symmetry. Phys. Rev. A 67, 062308 (2003)

    MathSciNet  ADS  Article  Google Scholar 

  47. 47

    DiVincenzo D.P., Leung D.W., Terhal B.M.: Quantum data hiding. IEEE Trans. Inform. Theory 48, 580 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  48. 48

    DiVincenzo D.P., Hayden P., Terhal B.M.: Hiding quantum data. Found. Phys. 33, 1629 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  49. 49

    Eggeling T., Werner R.F.: Hiding classical data in multi-partite quantum states. Phys. Rev. Lett. 89, 097905 (2002)

    ADS  Article  Google Scholar 

  50. 50

    Hayden P., Leung D., Winter A.: Aspects of generic entanglement. Commun. Math. Phys. 265, 95 (2006)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  51. 51

    Doherty A.C., Parrilo P.A., Spedalieri F.M.: A complete family of separability criteria. Phys. Rev. A 69, 022308 (2004)

    ADS  Article  Google Scholar 

  52. 52

    Brandão F.G.S.L., Vianna R.O.: Separable multipartite mixed states - operational asymptotically necessary and sufficient conditions. Phys. Rev. Lett. 93, 220503 (2004)

    ADS  Article  Google Scholar 

  53. 53

    Ioannou L.M.: Computational complexity of the quantum separability problem. Quant. Inform. Comp. 7, 335 (2007)

    MathSciNet  MATH  Google Scholar 

  54. 54

    Navascues M., Owari M., Plenio M.B.: A complete criterion for separability detection. Phys. Rev. Lett. 103, 160404 (2009)

    ADS  Article  Google Scholar 

  55. 55

    Gurvits L.: Classical complexity and quantum entanglement. J. Comp. Sys. Sci 69, 448 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  56. 56

    Gharibian S.: Strong NP-hardness of the quantum separability problem. Quant. Inform. Comp. 10, 343 (2010)

    MathSciNet  MATH  Google Scholar 

  57. 57

    Beigi S.: NP vs QMA log(2). Quant. Inform. Comp. 10, 141 (2010)

    MathSciNet  MATH  Google Scholar 

  58. 58

    Harrow, A., Montanaro, A.: An efficient test for product states, with applications to quantum Merlin-Arthur games. In: Proc. Found. Comp. Sci. (FOCS), 2010, p. 633

  59. 59

    Brandão, F.G.S.L., Christandl, M., Yard, J.: A quasipolynomial-time algorithm for the quantum separability problem. In: Proc. ACM Symp. on Theoretical Computer Science (STOC), 2011, p. 343

  60. 60

    Watrous, J.: Quantum computational complexity. In: Encyclopedia of Complexity and System Science. Berlin-Heidelberg-New York: Springer, 2009

  61. 61

    Marriott C., Watrous J.: Quantum Arthur-Merlin games. Computational Complexity 14, 122 (2005)

    MathSciNet  Article  Google Scholar 

  62. 62

    Beigi S., Shor P.W., Watrous J.: Quantum interactive proofs with short messages. Theory of Computing 7, 201 (2011)

    MathSciNet  Article  Google Scholar 

  63. 63

    Aaronson S., Beigi S., Drucker A., Fefferman B., Shor P.: The power of unentanglement. Theory of Computing 5, 1 (2009)

    MathSciNet  Article  Google Scholar 

  64. 64

    Kobayashi, H., Matsumoto, K., Yamakami, T.: Quantum Merlin-Arthur proof systems: Are multiple Merlins more helpful to Arthur? In: Lecture Notes in Computer Science, Volume 2906, Berlin-Heidelberg-Newyork: Springer, 2003, p. 189

  65. 65

    Brandão, F.G.S.L.: Entanglement Theory and the Quantum Simulation of Many-Body Physics. PhD thesis, Imperial College, 2008

  66. 66

    Matsumoto, K.: Can entanglement efficiently be weakened by symmetrization? http://arxiv/org/abs/quant-ph/0511240v3, 2005

  67. 67

    Horodecki K., Horodecki M., Horodecki P., Oppenheim J.: Locking entanglement measures with a single qubit. Phys. Rev. Lett. 94, 200501 (2005)

    MathSciNet  ADS  Article  Google Scholar 

  68. 68

    Piani M.: Relative entropy of entanglement and restricted measurements. Phys. Rev. Lett. 103, 160504 (2009)

    MathSciNet  ADS  Article  Google Scholar 

  69. 69

    Hiai F., Petz D.: The proper formula for the relative entropy and its asymptotics in quantum probability. Commun. Math. Phys. 143, 99 (1991)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  70. 70

    Ogawa T., Nagaoka H.: Strong converse and Stein’s lemma in the quantum hypothesis testing. IEEE Trans. Inform. Theory 46, 2428 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  71. 71

    Gühne O., Toth G.: Entanglement detection. Phys. Rep. 474, 1 (2009)

    MathSciNet  ADS  Article  Google Scholar 

  72. 72

    Brandão F.G.S.L.: Quantifying entanglement with witness operators. Phys. Rev. A 72, 022310 (2005)

    ADS  Article  Google Scholar 

  73. 73

    Brandão F.G.S.L.: Entanglement activation and the robustness of quantum correlations. Phys. Rev. A 76, 030301(R) (2007)

    ADS  Article  Google Scholar 

  74. 74

    Synak-Radtke B., Horodecki M.: On asymptotic continuity of functions of quantum states. J. Phys. A: Math. Gen. 39, 423 (2006)

    MathSciNet  ADS  Article  Google Scholar 

  75. 75

    Berta, M., Christandl, M., Renner, R.: A conceptually simple proof of the quantum reverse Shannon theorem. In: Lecture Notes in Computer Science, Volume 6519, Berlin-Heidelberg-New York: Springer, 2011, p. 131

  76. 76

    Berta, M., Christandl, M., Renner, R.: The quantum reverse Shannon theorem based on one-shot information theory. Commun. Math. Phys., 2011. to appear, http://arxiv.org/abs/0912.3805v2

  77. 77

    Brandão F.G.S.L., Plenio M.B.: Entanglement theory and the second law of thermodynamics. Nature Physics 4, 873 (2008)

    ADS  Article  Google Scholar 

  78. 78

    Brandão F.G.S.L., Plenio M.B.: A reversible theory of entanglement and its relation to the second law. Commun. Math. Phys. 295, 829 (2010)

    ADS  Article  MATH  Google Scholar 

  79. 79

    Brandão F.G.S.L., Datta N.: One-shot rates for entanglement manipulation under non-entangling maps. IEEE Trans. Inform. Theory 57, 1754 (2011)

    MathSciNet  Article  Google Scholar 

  80. 80

    Brandão, F.G.S.L.: A reversible framework for resource theories. In preparation, 2011

  81. 81

    Winter A.: Coding theorem and strong converse for quantum channels. IEEE Trans. Inform. Theory 45, 2481 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  82. 82

    Ogawa, T., Nagaoka, H.: A new proof of the channel coding theorem via hypothesis testing in quantum information theory. In: Proc. 2002 IEEE Int. Symp. Inform. Theory 2002, p. 73

  83. 83

    Renner R.: Symmetry implies independence. Nature Physics 3, 645 (2007)

    ADS  Article  Google Scholar 

  84. 84

    Jain, R.: Distinguishing sets of quantum states. http://arxiv.org/abs/quant-ph/0506205v1, 2005

  85. 85

    Vandenberghe L., Boyd S.: Semidefinite programming. SIAM Review 38, 49 (1996)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jon Yard.

Additional information

An erratum to this article can be found online at http://dx.doi.org/10.1007/s00220-012-1584-y.

Communicated by M.B. Ruskai

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brandão, F.G.S.L., Christandl, M. & Yard, J. Faithful Squashed Entanglement. Commun. Math. Phys. 306, 805 (2011). https://doi.org/10.1007/s00220-011-1302-1

Download citation

Keywords

  • Entangle State
  • Relative Entropy
  • Separable State
  • Entanglement Measure
  • Entanglement Witness