Skip to main content
Log in

Orthogonal Polynomials with Recursion Coefficients of Generalized Bounded Variation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider probability measures on the real line or unit circle with Jacobi or Verblunsky coefficients satisfying an p condition and a generalized bounded variation condition. This latter condition requires that a sequence can be expressed as a sum of sequences β (l), each of which has rotated bounded variation, i.e.,

$$\sum_{n=0}^\infty \vert e^{i\phi_l}\beta_{n+1}^{(l)} -\beta_n^{(l)}\vert < \infty$$

for some \({\phi_l}\) . This includes a large class of discrete Schrödinger operators with almost periodic potentials modulated by p decay, i.e. linear combinations of \({\lambda_n {\rm cos}(2\pi\alpha n + \phi)}\) with \({\lambda \in \ell^p}\) of bounded variation and any α.

In all cases, we prove absence of singular continuous spectrum, preservation of absolutely continuous spectrum from the corresponding free case, and that pure points embedded in the continuous spectrum can only occur in an explicit finite set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blumenthal, O.: Ueber die Entwicklung einer willkürlichen Funktion nach den Nennern des Kettenbruches für \({\int_{-\infty}^0 \frac{\varphi(\xi) d\xi}{x-\xi}}\) . Ph.D. dissertation, Göttingen, 1898

  2. Breuer, J.: Singular continuous and dense point spectrum for sparse trees with finite dimensions. In: Probability and Mathematical Physics, CRM Proc. and Lecture Notes 42, Providence RI: Amer. Math. Soc., 2007, pp. 65–83

  3. Breuer J.: Spectral and dynamical properties of certain random Jacobi matrices with growing parameter. Trans. Amer. Math. Soc. 362, 3161–3182 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Breuer J., Last Y., Simon B.: The Nevai condition. Constr. Approx. 32, 221–254 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chihara, T. S.: An Introduction to Orthogonal Polynomials. Mathematics and Its Applications 13, New York-London-Paris: Gordon and Breach, 1978

  6. Eggarter T.: Some exact results on electron energy levels in certain one-dimensional random potentials. Phys. Rev. B5, 3863–3865 (1972)

    ADS  Google Scholar 

  7. Freud G.: Orthogonal Polynomials. Pergamon Press, Oxford-New York (1971)

    Google Scholar 

  8. Geronimus Ya. L.: Orthogonal Polynomials: Estimates, Asymptotic Formulas, and Series of Polynomials Orthogonal on the Unit Circle and on an Interval. Consultants Bureau, New York (1961)

    Google Scholar 

  9. Geronimus, Ya. L.: Polynomials orthogonal on a circle and their applications. Amer. Math. Soc. Translation 1954(104), 79 pp (1954)

    Google Scholar 

  10. Golinskii L., Nevai P.: Szegő difference equations, transfer matrices and orthogonal polynomials on the unit circle. Commun. Math. Phys. 223, 223–259 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Gredeskul S. A., Pastur L. A.: Behavior of the density of states in one-dimensional disordered systems near the edges of the spectrum. Theor. Math. Phys. 23, 132–139 (1975)

    Article  Google Scholar 

  12. Janas, J., Simonov, S.: Weyl–Titchmarsh type formula for discrete Schrödinger operator with Wigner–von Neumann potential. To appear in Studia Math. available at http://arxiv.org/abs/1003.3319v1 [math.SP], 2010

  13. Kaluzhny, U., Last, Y.: Purely absolutely continuous spectrum for some random Jacobi matrices. In: Probability and mathematical physics, CRM Proc. Lecture Notes 42, Providence, RI: Amer. Math. Soc., pp. 273–281, 2007

  14. Kaluzhny, U., Shamis, S.: Preservation of Absolutely Continuous Spectrum of Periodic Jacobi Operators Under Perturbations of Square-Summable Variation. to appear in Constr. Approx, available at http://arxiv.org/abs/0912.1142v2 [math.SP], 2010

  15. Kiselev A., Last Y., Simon B.: Modified Prüfer and EFGP transforms and the spectral analysis of one-dimensional Schrödinger operators. Commun. Math. Phys. 194(1), 1–45 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Last Y.: Destruction of absolutely continuous spectrum by perturbation potentials of bounded variation. Commun. Math. Phys. 274(1), 243–252 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Máté, A., Nevai, P.: Orthogonal polynomials and absolutely continuous measures. In: Approximation Theory, IV (College Station, TX, 1983), New York: Academic Press, 1983, pp. 611–617

  18. Nevai, P.: Orthogonal polynomials. Mem. Amer. Math. Soc. 18(213), 185 pp, (1979)

  19. Nevai P.: Orthogonal polynomials, measures and recurrences on the unit circle. Trans. Amer. Math. Soc. 300(1), 175–189 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nikishin E.M.: An estimate for orthogonal polynomials. Acta Sci. Math. (Szeged) 48(1–4), 395–399 (1985)

    MathSciNet  MATH  Google Scholar 

  21. Pastur L., Figotin A.: Spectra of Random and Almost-Periodic Operators. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  22. Peherstorfer F., Steinbauer R.: Orthogonal polynomials on the circumference and arcs of the circumference. J. Approx. Theory 102(1), 96–119 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Prüfer H.: Neue Herleitung der Sturm–Liouvilleschen Reihenentwicklung stetiger Funktionen. Math. Ann. 95(1), 499–518 (1926)

    Article  MathSciNet  MATH  Google Scholar 

  24. Simon, B.: Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory. AMS Colloquium Publications 54.1, Providence, RI: Amer. Math. Soc., 2005

  25. Simon, B.: Orthogonal Polynomials on the Unit Circle, Part 2: Spectral Theory. AMS Colloquium Publications 54.2, Providence, RI: Amer. Math. Soc., 2005

  26. Simon B.: Szegő’s Theorem and Its Descendants: Spectral Theory for L 2 Perturbations of Orthogonal Polynomials. Princeton University Press, Princeton, NJ (2010)

    Google Scholar 

  27. Simon, B.: Orthogonal polynomials with exponentially decaying recursion coefficients. In: Probability and Mathematical Physics, CRM Proc. Lecture Notes 42 Providence, RI: Amer. Math. Soc., 2007, pp. 453–463

  28. Stieltjes, T.: Recherches sur les fractions continues. Ann. Fac. Sci. Univ. Toulouse 8, J76–J122; ibid. 9, A5–A47 (1894-95)

  29. Szegő, G.: Orthogonal Polynomials. Amer. Math. Soc. Colloq. Publ. 23, Providence, RI: Amer. Math. Soc., 1939, third edition, 1967

  30. Verblunsky S.: On positive harmonic functions: A contribution to the algebra of Fourier series. Proc. London Math. Soc. (2) 38, 125–157 (1935)

    Article  Google Scholar 

  31. Weidmann J.: Zur Spektraltheorie von Sturm-Liouville-Operatoren. Math. Z. 98, 268–302 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  32. Weyl H.: Über beschraänkte quadratische Formen, deren Differenz vollstetig ist. Rend. Circ. Mat. Palermo 27, 373–392 (1909)

    Article  Google Scholar 

  33. Wong M.-W. L.: Generalized bounded variation and inserting point masses. Constr. Approx. 30(1), 1–15 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milivoje Lukic.

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukic, M. Orthogonal Polynomials with Recursion Coefficients of Generalized Bounded Variation. Commun. Math. Phys. 306, 485–509 (2011). https://doi.org/10.1007/s00220-011-1287-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1287-9

Keywords

Navigation