Abstract
Consider a 1D Vlasov-poisson system with a fixed ion background and periodic condition on the space variable. First, we show that for general homogeneous equilibria, within any small neighborhood in the Sobolev space \({W^{s,p}\left( p >1 ,s <1 +\frac{1}{p}\right)}\) of the steady distribution function, there exist nontrivial travelling wave solutions (BGK waves) with arbitrary minimal period and traveling speed. This implies that nonlinear Landau damping is not true in \({W^{s,p}\left( s <1 +\frac{1}{p}\right)}\) space for any homogeneous equilibria and any spatial period. Indeed, in a \({W^{s,p}\left(s <1 +\frac{1}{p}\right)}\) neighborhood of any homogeneous state, the long time dynamics is very rich, including travelling BGK waves, unstable homogeneous states and their possible invariant manifolds. Second, it is shown that for homogeneous equilibria satisfying Penrose’s linear stability condition, there exist no nontrivial travelling BGK waves and unstable homogeneous states in some \({W^{s,p}\left( p >1 ,s >1 +\frac{1}{p}\right)}\) neighborhood. Furthermore, when p = 2, we prove that there exist no nontrivial invariant structures in the \({H^{s}\left( s > \frac{3}{2}\right) }\) neighborhood of stable homogeneous states. These results suggest the long time dynamics in the \({W^{s,p}\left( s >1 +\frac{1}{p}\right) }\) and particularly, in the \({H^{s}\left( s > \frac{3}{2}\right) }\) neighborhoods of a stable homogeneous state might be relatively simple. We also demonstrate that linear damping holds for initial perturbations in very rough spaces, for a linearly stable homogeneous state. This suggests that the contrasting dynamics in W s, p spaces with the critical power \({s=1+\frac{1}{p}}\) is a truly nonlinear phenomena which can not be traced back to the linear level.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Adams R.A., Fournier J.J.F.: Sobolev spaces. Second edition. Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Amsterdam (2003)
Akhiezer, A., Akhiezer, I., Polovin, R., Sitenko, A., Stepanov, K.: Plasma electrodynamics. Vol. I: Linear theory, London: Pergamon Press, 1975 (English Edition, translated by D. ter Haar)
Armstrong T., Montgomery D.: Asymptotic state of the two-stream instability. J. Plasma. Phys. 1(part 4), 425–433 (1967)
Backus G.: Linearized plasma oscillations in arbitrary electron distributions. J. Math. Phys. 1, 178–191 (1960)
Gizzo A., Izrar B., Bertrand P., Fijalkow E., Feix M.R., Shoucri M.: Stability of Bernstein-Greene-Kruskal plasma equilibria. Numerical experiments over a long time. Phys, Fluids 31(1), 72–82 (1988)
Bernstein I., Greene J., Kruskal M.: Exact nonlinear plasma oscillations. Phys. Rev. 108(3), 546–550 (1957)
Bernstein I.B.: Waves in a Plasma in a Magnetic Field. Phys. Rev. 109, 10–21 (1958)
Bohm D., Gross E.P.: Theory of Plasma Oscillations. A. Origin of Medium-Like Behavior. Phys. Rev. 75, 1851–1864 (1949)
Brunetti M., Califano F., Pegoraro F.: Asymptotic evolution of nonlinear Landau damping. Phys. Rev. E 62, 4109–4114 (2000)
Buchanan M.L., Dorning J.J.: Nonlinear electrostatic waves in collisionless plasmas. Phys. Rev. E 52, 3015–3033 (1995)
Buchanan M.L., Dorning J.J.: Superposition of nonlinear plasma waves. Phys. Rev. Lett. 70, 3732–3735 (1993)
Case K.: Plasma oscillations. Ann. Phys. 7, 349–364 (1959)
Caglioti E., Maffei C.: Time asymptotics for solutions of Vlasov–Poisson equation in a circle. J. Stat. Phys. 92, 301–323 (1998)
Danielson J.R., Anderegg F., Driscoll C.F.: Measurement of Landau Damping and the Evolution to a BGK Equilibrium. Phys. Rev. Lett. 92, 245003-1–245003-4 (2004)
Degond P.: Spectral theory of the linearized Vlasov–Poisson equation. Trans. Amer. Math. Soc. 294(2), 435–453 (1986)
Demeio L., Zweifel P.F.: Numerical simulations of perturbed Vlasov equilibria. Phys. Fluids B 2, 1252–1255 (1990)
Demeio L., Holloway J.P.: Numerical simulations of BGK modes. J. Plasma Phys. 46, 63–84 (1991)
Glassey R., Schaeffer J.: On time decay rates in Landau damping. Comm. Part. Diff. Eqs. 20, 647–676 (1995)
Glassey R., Schaeffer J.: Time decay for solutions to the linearized Vlasov equation. Transport Theo. Stat. Phys. 23, 411–453 (1994)
Guo Y., Strauss W.: Instability of periodic BGK equilibria. Comm. Pure Appl. Math. XLVIII, 861–894 (1995)
Klimas A.J., Cooper J.: Vlasov–Maxwell and Vlasov–Poisson equations as models of a one-dimensional electron plasma. Phys. Fluids 26, 478–480 (1983)
Holloway J.P., Dorning J.J.: Undamped plasma waves. Phys. Rev. A 44, 3856–3868 (1991)
Holloway, J.P., Dorning, J.J.: Nonlinear but small amplitude longitudinal plasma waves. In: Modern mathematical methods in transport theory (Blacksburg, VA, 1989). Oper. Theory Adv. Appl. 51, Basel: Birkhäuser, 1991, pp. 155–179
Hörmander, L.: The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis. Second edition. Grundlehren der Mathematischen Wissenschaften, 256. Berlin: Springer-Verlag, 1990
Hwang H.J., Vélazquez J.O.: On the existence of exponentially decreasing solutions of the nonlinear landau damping problem. Indiana Univ. Math. J. 58(6), 2623–2660 (2009)
Isichenko M.B.: Nonlinear Landau Damping in Collisionless Plasma and Inviscid Fluid. Phys. Rev. Lett. 78, 2369–2372 (1997)
Krasovsky V.L., Matsumoto H., Omura Y.: Electrostatic solitary waves as collective charges in a magnetospheric plasma: Physical structure and properties of Bernstein–Greene–Kruskal (BGK) solitons. J. Geophys. Res. 108(A3), 1117 (2004)
Lancellotti C., Dorning J.J.: Time-asymptotic wave propagation in collisionless plasmas. Phys. Rev. E 68, 026406 (2003)
Landau L.: On the vibration of the electronic plasma. J. Phys. USSR 10, 25 (1946)
Lin Z.: Instability of some ideal plane flows. SIAM J. Math. Anal. 35, 318–356 (2003)
Lin Z.: Instability of periodic BGK waves. Math. Res. Letts. 8, 521–534 (2001)
Lin Z.: Nonlinear instability of periodic waves for Vlasov-Poisson system. Comm. Pure. Appl. Math. 58, 505–528 (2005)
Lin, Z., Zeng, C.: Invariant manifolds of Euler equations. Preprint in preparation
Lin, Z., Zeng, C.: Inviscid dynamical structures near Couette flow. Arch. Rat. Mech. Anal., to appear, doi:10.1007/500205-010-0389-9, 2010
Lin, Z., Zeng, C.: Invariant manifolds of Vlasov-Poisson equations. Work in progress
Medvedev M.V., Diamond P.H., Rosenbluth M.N., Shevchenko V.I.: Asymptotic Theory of Nonlinear Landau Damping and Particle Trapping in Waves of Finite Amplitude. Phys. Rev. Lett. 81, 5824 (1998)
Manfredi G.: Long-Time Behavior of Nonlinear Landau Damping. Phys. Rev. Lett. 79, 2815 (1997)
Mouhot, C., Villani, C.: On Landau damping. Acta Math. (to appear)
Muschietti L., Ergun R.E., Roth I., Carlson C.W.: Phase-space electron holes along magnetic field lines. Geophys. Res. Lett. 26, 1093–1096 (1999)
Orr W.McF.: Stability and instability of steady motions of a perfect liquid. Proc. Ir. Acad. Sect. A, Math Astron. Phys. Sci. 27, 9–66 (1907)
Penrose O.: Electrostatic instability of a non-Maxwellian plasma. Phys. Fluids 3, 258–265 (1960)
O’Neil T.: Collisionless damping of nonlinear plasma oscillations. Phys. Fluids 8, 2255–2262 (1965)
Stein E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, NJ (1970)
Strichartz R.S.: Multipliers on fractional Sobolev spaces. J. Math. Mech. 16, 1031–1060 (1967)
Tartar L.: An introduction to Sobolev spaces and interpolation spaces. Lecture Notes of the Unione Matematica Italiana, 3. Springer/UMI, Berlin-Bologna (2007)
Triebel H.: Theory of function spaces. Monographs in Mathematics, 78. Birkhäuser Verlag, Basel (1983)
Valentini F., Carbone V., Veltri P., Mangeney A.: Wave-Particle Interaction and Nonlinear Landau Damping in Collisionless Electron Plasmas. Transport Th. Stat. Phys. 34, 89–101 (2005)
Weitzner H.: Plasma oscillations and Landau damping. Phys. Fluids 6, 1123–1127 (1963)
van Kampen N.: On the theory of stationary waves in plasma. Physica 21, 949–963 (1955)
Zhou T., Guo Y., Shu C.-W.: Numerical study on Landau damping. Physica D 157, 322–333 (2001)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by H. Spohn
Rights and permissions
About this article
Cite this article
Lin, Z., Zeng, C. Small BGK Waves and Nonlinear Landau Damping. Commun. Math. Phys. 306, 291–331 (2011). https://doi.org/10.1007/s00220-011-1246-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-011-1246-5