Skip to main content

Topological Geon Black Holes in Einstein-Yang-Mills Theory

Abstract

We construct topological geon quotients of two families of Einstein-Yang-Mills black holes. For Künzle’s static, spherically symmetric SU(n) black holes with n > 2, a geon quotient exists but generically requires promoting charge conjugation into a gauge symmetry. For Kleihaus and Kunz’s static, axially symmetric SU(2) black holes a geon quotient exists without gauging charge conjugation, and the parity of the gauge field winding number determines whether the geon gauge bundle is trivial. The geon’s gauge bundle structure is expected to have an imprint in the Hawking-Unruh effect for quantum fields that couple to the background gauge field.

This is a preview of subscription content, access via your institution.

References

  1. Sorkin, R.D.: Introduction to topological geons. In: Topological Properties and Global Structure of Space-time: Proceedings of the NATO Advanced Study Institute on Topological Properties and Global Structure of Space-time, Erice, Italy, 12–22 May 1985, edited by P. G. Bergmann, V. de Sabbata, New York: Plenum Press, 1986, pp. 249–270

  2. Sorkin R.: The quantum electromagnetic field in multiply connected space. J. Phys. A 12, 403 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  3. Friedman J.L., Sorkin R.D.: Spin 1/2 from gravity. Phys. Rev. Lett. 44, 1100 (1980)

    Article  ADS  Google Scholar 

  4. Friedman J.L., Sorkin R.D.: Half integral spin from quantum gravity. Gen. Rel. Grav. 14, 615 (1982)

    MathSciNet  ADS  MATH  Google Scholar 

  5. Misner, C.W., Wheeler, J.A.: Classical physics as geometry: Gravitation, electromagnetism, unquantized charge, and mass as properties of curved empty space. Annals Phys. (N.Y.) 2, 525, (1957); Reprinted in: J. A. Wheeler, Geometrodynamics. New York: Academic, 1962

  6. Giulini, D.: 3-manifolds in canonical quantum gravity. Ph.D. Thesis, University of Cambridge, 1990

  7. Giulini, D.: Two-body interaction energies in classical general relativity. In: Relativistic Astrophysics and Cosmology, Proceedings of the Tenth Seminar, Potsdam, October 21–26 1991, edited by Gottlöber, S., Mücket, J.P., Müller V. Singapore: World Scientific, 1992, pp. 333–338

  8. Friedman, J.L., Schleich, K., Witt, D.M.: Topological censorship. Phys. Rev. Lett. 71, 1486 (1993) [Erratum-ibid. 75, 1872 (1995)]

    Google Scholar 

  9. Louko J., Marolf D.: Single-exterior black holes and the AdS-CFT conjecture. Phys. Rev. D 59, 066002 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  10. Louko J., Marolf D., Ross S.F.: On geodesic propagators and black hole holography. Phys. Rev. D 62, 044041 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  11. Maldacena J.M.: Eternal black holes in Anti-de-Sitter. JHEP 0304, 021 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  12. Louko J., Mann R.B., Marolf D.: Geons with spin and charge. Class. Quant. Grav. 22, 1451 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Birrell N.D., Davies P.C.W.: Quantum fields in curved space. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  14. Louko J., Marolf D.: Inextendible Schwarzschild black hole with a single exterior: how thermal is the Hawking radiation?. Phys. Rev. D 58, 024007 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  15. Langlois, P.: Hawking radiation for Dirac spinors on the RP3 geon. Phys. Rev. D 70, 104008 (2004) [Erratum-ibid. D 72, 129902 (2005)]

    Google Scholar 

  16. Louko J.: Geon black holes and quantum field theory. J. Phys. Conf. Ser. 222, 012038 (2010)

    Article  ADS  Google Scholar 

  17. Kiskis J.E.: Disconnected gauge groups and the global violation of charge conservation. Phys. Rev. D 17, 3196 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  18. Bruschi, D.E., Louko, J.:Charged Unruh effect on geon spacetimes. http://arXiv./orglabs/1003.1297v1 [gr-qc], 2010 talk given by D. E. Bruschi at the 12th Marcel Grossmann meeting, Paris, France, 12–18 July 2009

  19. Bruschi, D.E., Louko, J.: In preparation

  20. Künzle H.P.: SU(n) Einstein Yang-Mills fields with spherical symmetry. Class. Quant. Grav. 8, 2283 (1991)

    Article  ADS  MATH  Google Scholar 

  21. Bartnik R.: The structure of spherically symmetric su(n) Yang-Mills fields. J. Math. Phys. 38, 3623 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Künzle H.P.: Analysis of the static spherically symmetric SU(n) Einstein Yang-Mills equations. Commun. Math. Phys. 162, 371 (1994)

    Article  ADS  MATH  Google Scholar 

  23. Baxter J.E., Helbling M., Winstanley E.: Soliton and black hole solutions of su(N) Einstein-Yang-Mills theory in anti-de Sitter space. Phys. Rev. D 76, 104017 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  24. Baxter J.E., Helbling M., Winstanley E.: Abundant stable gauge field hair for black holes in anti-de Sitter space. Phys. Rev. Lett. 100, 011301 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  25. Kleihaus B., Kunz J.: Static black hole solutions with axial symmetry. Phys. Rev. Lett. 79, 1595 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Kleihaus B., Kunz J.: Static axially symmetric Einstein-Yang-Mills-dilaton solutions. II: Black hole solutions. Phys. Rev. D 57, 6138 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  27. Conlon L.: Differentiable manifolds 2nd edition. Birkhauser, Boston (2001)

    Book  MATH  Google Scholar 

  28. Harnad J.P., Vinet L., Shnider S.: Group actions on principal bundles and invariance conditions for gauge fields. J. Math. Phys. 21, 2719 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Molelekoa M.: Symmetries of gauge fields. J. Math. Phys. 26, 192 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  30. Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E.: Exact Solutions of Einstein’s Field Equations 2nd edition. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  31. Misner C.W., Thorne K.S., Wheeler J.A.: Gravitation. San Francisco, Freeman (1973)

    Google Scholar 

  32. Wang H.-C.: On invariant connections over a principal fibre bundle. Nagoya Math. J. 13, 1 (1958)

    MathSciNet  MATH  Google Scholar 

  33. Volkov M.S., Gal’tsov D.V.: Gravitating non-abelian solitons and black holes with Yang-Mills fields. Phys. Rept. 319, 1 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  34. Steenrod N.: The topology of fibre bundles. Princeton University Press, Princeton (1951)

    MATH  Google Scholar 

  35. Naber G.L.: Topology, geometry and gauge fields: foundations. Springer, New York (1997)

    MATH  Google Scholar 

  36. Kleihaus B., Kunz J., Sood A.: Charged SU(N) Einstein-Yang-Mills black holes. Phys. Lett. B 418, 284 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  37. Nakahara M.: Geometry, topology and physics 2nd edition. IOP Publishing, Bristol (2003)

    Book  Google Scholar 

  38. Radu E., Winstanley E.: Static axially symmetric solutions of Einstein-Yang-Mills equations with a negative cosmological constant: Black hole solutions. Phys. Rev. D 70, 084023 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  39. Kleihaus B., Kunz J.: Static axially symmetric Einstein Yang-Mills-dilaton solutions. I: Regular solutions. Phys. Rev. D 57, 834 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  40. Kleihaus B.: On the regularity of static axially symmetric solutions in SU(2) Yang-Mills dilaton theory. Phys. Rev. D 59, 125001 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  41. Kleihaus, B., Kunz, J.: Comment on ‘Singularities in axially symmetric solutions of Einstein-Yang-Mills and related theories, by L. Hannibal’, arXiv:hep-th/9903235

  42. Bizon P.: Colored black holes. Phys. Rev. Lett. 64, 2844 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Künzle H.P., Masood-ul-Alam A.K.M.: Spherically symmetric static SU(2) Einstein-Yang-Mills fields. J. Math. Phys. 31, 928 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Rácz I., Wald R.M.: Extension of space-times with Killing horizon. Class. Quant. Grav. 9, 2643 (1992)

    Article  ADS  MATH  Google Scholar 

  45. Rácz I., Wald R.M.: Global extensions of space-times describing asymptotic final states of black holes. Class. Quant. Grav. 13, 539 (1996)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorma Louko.

Additional information

Communicated by P.T. Chruściel

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kottanattu, G.T., Louko, J. Topological Geon Black Holes in Einstein-Yang-Mills Theory. Commun. Math. Phys. 303, 127–148 (2011). https://doi.org/10.1007/s00220-011-1195-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1195-z

Keywords