Abstract
We construct topological geon quotients of two families of Einstein-Yang-Mills black holes. For Künzle’s static, spherically symmetric SU(n) black holes with n > 2, a geon quotient exists but generically requires promoting charge conjugation into a gauge symmetry. For Kleihaus and Kunz’s static, axially symmetric SU(2) black holes a geon quotient exists without gauging charge conjugation, and the parity of the gauge field winding number determines whether the geon gauge bundle is trivial. The geon’s gauge bundle structure is expected to have an imprint in the Hawking-Unruh effect for quantum fields that couple to the background gauge field.
This is a preview of subscription content, access via your institution.
References
Sorkin, R.D.: Introduction to topological geons. In: Topological Properties and Global Structure of Space-time: Proceedings of the NATO Advanced Study Institute on Topological Properties and Global Structure of Space-time, Erice, Italy, 12–22 May 1985, edited by P. G. Bergmann, V. de Sabbata, New York: Plenum Press, 1986, pp. 249–270
Sorkin R.: The quantum electromagnetic field in multiply connected space. J. Phys. A 12, 403 (1979)
Friedman J.L., Sorkin R.D.: Spin 1/2 from gravity. Phys. Rev. Lett. 44, 1100 (1980)
Friedman J.L., Sorkin R.D.: Half integral spin from quantum gravity. Gen. Rel. Grav. 14, 615 (1982)
Misner, C.W., Wheeler, J.A.: Classical physics as geometry: Gravitation, electromagnetism, unquantized charge, and mass as properties of curved empty space. Annals Phys. (N.Y.) 2, 525, (1957); Reprinted in: J. A. Wheeler, Geometrodynamics. New York: Academic, 1962
Giulini, D.: 3-manifolds in canonical quantum gravity. Ph.D. Thesis, University of Cambridge, 1990
Giulini, D.: Two-body interaction energies in classical general relativity. In: Relativistic Astrophysics and Cosmology, Proceedings of the Tenth Seminar, Potsdam, October 21–26 1991, edited by Gottlöber, S., Mücket, J.P., Müller V. Singapore: World Scientific, 1992, pp. 333–338
Friedman, J.L., Schleich, K., Witt, D.M.: Topological censorship. Phys. Rev. Lett. 71, 1486 (1993) [Erratum-ibid. 75, 1872 (1995)]
Louko J., Marolf D.: Single-exterior black holes and the AdS-CFT conjecture. Phys. Rev. D 59, 066002 (1999)
Louko J., Marolf D., Ross S.F.: On geodesic propagators and black hole holography. Phys. Rev. D 62, 044041 (2000)
Maldacena J.M.: Eternal black holes in Anti-de-Sitter. JHEP 0304, 021 (2003)
Louko J., Mann R.B., Marolf D.: Geons with spin and charge. Class. Quant. Grav. 22, 1451 (2005)
Birrell N.D., Davies P.C.W.: Quantum fields in curved space. Cambridge University Press, Cambridge (1984)
Louko J., Marolf D.: Inextendible Schwarzschild black hole with a single exterior: how thermal is the Hawking radiation?. Phys. Rev. D 58, 024007 (1998)
Langlois, P.: Hawking radiation for Dirac spinors on the RP3 geon. Phys. Rev. D 70, 104008 (2004) [Erratum-ibid. D 72, 129902 (2005)]
Louko J.: Geon black holes and quantum field theory. J. Phys. Conf. Ser. 222, 012038 (2010)
Kiskis J.E.: Disconnected gauge groups and the global violation of charge conservation. Phys. Rev. D 17, 3196 (1978)
Bruschi, D.E., Louko, J.:Charged Unruh effect on geon spacetimes. http://arXiv./orglabs/1003.1297v1 [gr-qc], 2010 talk given by D. E. Bruschi at the 12th Marcel Grossmann meeting, Paris, France, 12–18 July 2009
Bruschi, D.E., Louko, J.: In preparation
Künzle H.P.: SU(n) Einstein Yang-Mills fields with spherical symmetry. Class. Quant. Grav. 8, 2283 (1991)
Bartnik R.: The structure of spherically symmetric su(n) Yang-Mills fields. J. Math. Phys. 38, 3623 (1997)
Künzle H.P.: Analysis of the static spherically symmetric SU(n) Einstein Yang-Mills equations. Commun. Math. Phys. 162, 371 (1994)
Baxter J.E., Helbling M., Winstanley E.: Soliton and black hole solutions of su(N) Einstein-Yang-Mills theory in anti-de Sitter space. Phys. Rev. D 76, 104017 (2007)
Baxter J.E., Helbling M., Winstanley E.: Abundant stable gauge field hair for black holes in anti-de Sitter space. Phys. Rev. Lett. 100, 011301 (2008)
Kleihaus B., Kunz J.: Static black hole solutions with axial symmetry. Phys. Rev. Lett. 79, 1595 (1997)
Kleihaus B., Kunz J.: Static axially symmetric Einstein-Yang-Mills-dilaton solutions. II: Black hole solutions. Phys. Rev. D 57, 6138 (1998)
Conlon L.: Differentiable manifolds 2nd edition. Birkhauser, Boston (2001)
Harnad J.P., Vinet L., Shnider S.: Group actions on principal bundles and invariance conditions for gauge fields. J. Math. Phys. 21, 2719 (1980)
Molelekoa M.: Symmetries of gauge fields. J. Math. Phys. 26, 192 (1985)
Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E.: Exact Solutions of Einstein’s Field Equations 2nd edition. Cambridge University Press, Cambridge (2003)
Misner C.W., Thorne K.S., Wheeler J.A.: Gravitation. San Francisco, Freeman (1973)
Wang H.-C.: On invariant connections over a principal fibre bundle. Nagoya Math. J. 13, 1 (1958)
Volkov M.S., Gal’tsov D.V.: Gravitating non-abelian solitons and black holes with Yang-Mills fields. Phys. Rept. 319, 1 (1999)
Steenrod N.: The topology of fibre bundles. Princeton University Press, Princeton (1951)
Naber G.L.: Topology, geometry and gauge fields: foundations. Springer, New York (1997)
Kleihaus B., Kunz J., Sood A.: Charged SU(N) Einstein-Yang-Mills black holes. Phys. Lett. B 418, 284 (1998)
Nakahara M.: Geometry, topology and physics 2nd edition. IOP Publishing, Bristol (2003)
Radu E., Winstanley E.: Static axially symmetric solutions of Einstein-Yang-Mills equations with a negative cosmological constant: Black hole solutions. Phys. Rev. D 70, 084023 (2004)
Kleihaus B., Kunz J.: Static axially symmetric Einstein Yang-Mills-dilaton solutions. I: Regular solutions. Phys. Rev. D 57, 834 (1998)
Kleihaus B.: On the regularity of static axially symmetric solutions in SU(2) Yang-Mills dilaton theory. Phys. Rev. D 59, 125001 (1999)
Kleihaus, B., Kunz, J.: Comment on ‘Singularities in axially symmetric solutions of Einstein-Yang-Mills and related theories, by L. Hannibal’, arXiv:hep-th/9903235
Bizon P.: Colored black holes. Phys. Rev. Lett. 64, 2844 (1990)
Künzle H.P., Masood-ul-Alam A.K.M.: Spherically symmetric static SU(2) Einstein-Yang-Mills fields. J. Math. Phys. 31, 928 (1990)
Rácz I., Wald R.M.: Extension of space-times with Killing horizon. Class. Quant. Grav. 9, 2643 (1992)
Rácz I., Wald R.M.: Global extensions of space-times describing asymptotic final states of black holes. Class. Quant. Grav. 13, 539 (1996)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by P.T. Chruściel
Rights and permissions
About this article
Cite this article
Kottanattu, G.T., Louko, J. Topological Geon Black Holes in Einstein-Yang-Mills Theory. Commun. Math. Phys. 303, 127–148 (2011). https://doi.org/10.1007/s00220-011-1195-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-011-1195-z