Skip to main content
Log in

An Isoperimetric Inequality for Fundamental Tones of Free Plates

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We establish an isoperimetric inequality for the fundamental tone (first nonzero eigenvalue) of the free plate of a given area, proving the ball is maximal. Given τ > 0, the free plate eigenvalues ω and eigenfunctions u are determined by the equation ΔΔuτΔu = ωu together with certain natural boundary conditions. The boundary conditions are complicated but arise naturally from the plate Rayleigh quotient, which contains a Hessian squared term |D 2 u|2.

We adapt Weinberger’s method from the corresponding free membrane problem, taking the fundamental modes of the unit ball as trial functions. These solutions are a linear combination of Bessel and modified Bessel functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashbaugh, M.S.: Isoperimetric and universal inequalities for eigenvalues. In: Spectral theory and geometry (Edinburgh, 1998), London Math. Soc. Lecture Note Ser., 273, Cambridge: Cambridge Univ. Press, 1999, pp. 95–139

  2. Ashbaugh M.S., Benguria R.: Sharp upper bound to the first nonzero Neumann eigenvalue for bounded domains in spaces of constant curvature. J. London Math. Soc. (2) 52(2), 402–416 (1995)

    MATH  MathSciNet  Google Scholar 

  3. Ashbaugh M.S., Benguria R.: On Rayleigh’s conjecture for the clamped plate and its generalization to three dimensions. Duke Math. J. 78, 1–17 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ashbaugh M.S., Laugesen R.S.: Fundamental tones and buckling loads of clamped plates. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23(2), 383–402 (1996)

    MATH  MathSciNet  Google Scholar 

  5. Bandle C.: Isoperimetric Inequalities and Applications. Pitman Advanced Publishing Program, Boston-London-Melbourne, Pitman (1980)

    MATH  Google Scholar 

  6. Chasman, L.M.: The fundamental tone of the free circular plate. http://arxiv.org/abs/1004.3316v1 [math.AP], 2010 Applicable Analysis (to appear)

  7. Chasman, L.M.: Isoperimetric problem for eigenvalues of free plates. Ph.D thesis, University of Illinois at Urbana-Champaign, 2009. http://arxiv.org/abs/1004.0016v1 [math.SP], 2010

  8. de Groen P.P.N. (1979) Singular perturbations of spectra. Asymptotic analysis, Lecture Notes in Math. 711. Springer, Berlin, pp. 9–32

  9. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (2001) (Reprint of 1998 edition)

    MATH  Google Scholar 

  10. Henrot A.: Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006

  11. Kawohl B., Levine H.A., Velte W.: Buckling eigenvalues for a clamped plate embedded in an elastic medium and related questions. SIAM J. Math. Anal. 24(2), 327–340 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kesavan S.: Symmetrization and Applications. World Scientific, Singapore (2006)

    Book  MATH  Google Scholar 

  13. Kornhauser E.T., Stakgold I.: A variational theorem for \({\nabla^2u+\lambda u=0}\) and its application. J. Math. Phys. 31, 45–54 (1952)

    MATH  MathSciNet  Google Scholar 

  14. Hersch J.: Quatre propriétés isopérimétriques de membranes sphériques homogènes. C. R. Acad. Sci. Paris Ser. A-B 270, A1645–A1648 (1970)

    MathSciNet  Google Scholar 

  15. Licari H.P., Warner H.: Domain dependence of eigenvalues of vibrating plates. SIAM J. Appl. Math. 24(3), 383–395 (1973)

    Article  MATH  Google Scholar 

  16. Lieb, E.H., Loss, M.: Analysis. Second edition. Graduate Studies in Mathematics, 14. Providence, RI: Amer. Math. Soc. 2001

  17. Lorch L., Szego P.: Bounds and monotonicities for the zeros of derivatives of ultraspherical Bessel functions. SIAM J. Math. Anal. 25(2), 549–554 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nadirashvili, N.S.: New isoperimetric inequalities in mathematical physics. In: Partial differential equations of elliptic type (Cortona, 1992), Sympos. Math. XXXV, Cambridge: Cambridge Univ. Press, 1994, pp. 197–203

  19. Nadirashvili N.S.: Rayleigh’s conjecture on the principal frequency of the clamped plate. Arch. Rat. Mech. Anal 129, 1–10 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Nazarov S.A., Sweers G.: A hinged plate equation and iterated Dirichlet Laplace operator on domains with concave corners. J. Diff. Eqs. 233(1), 151–180 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nirenberg L.: Remarks on strongly elliptic partial differential equations. Comm. Pure Appl. Math. 8, 649–675 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  22. Payne L.E.: New isoperimetric inequalities for eigenvalues and other physical quantities. Comm. Pure Appl. Math. 9, 531–542 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  23. Payne L.E.: Inequalities for eigenvalues of supported and free plates. Quart. Appl. Math. 16, 111–120 (1958)

    MATH  MathSciNet  Google Scholar 

  24. Rayleigh, J.W.S.: The theory of sound. New York: Dover Pub, 1945, Re-publication of the 1894/96 edition

  25. Showalter, R.E.: Hilbert space methods for partial differential equations. Monographs and Studies in Mathematics, Vol. 1. London-San Francisco-Melbourne: Pitman, 1977

  26. Szegő G.: On membranes and plates. Proc. Nat. Acad. Sci. 36, 210–216 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  27. Szegő G.: Inequalities for certain eigenvalues of a membrane of given area. J. Rat. Mech. Anal. 3, 343–356 (1954)

    Google Scholar 

  28. Szegő G.: Note to my paper “On membranes and plates”. Proc. Nat. Acad. Sci. (USA) 44, 314–316 (1958)

    Article  ADS  Google Scholar 

  29. Talenti G.: On the first eigenvalue of the clamped plate. Ann. Mat. Pura Appl. (Ser. 4) 129, 265–280 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  30. Taylor, M.E.: Partial Differential Equations. I. Basic Theory. Applied Mathematical Sciences, 115. New York: Springer-Verlag, 1996

  31. Verchota G.C.: The biharmonic Neumann problem in Lipschitz domains. Acta Math. 194(2), 217–279 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Weinberger H.F.: An isoperimetric inequality for the N-dimensional free membrane problem. J. Rat. Mech. Anal. 5, 633–636 (1956)

    MathSciNet  MATH  Google Scholar 

  33. Weinstock R.: Calculus of Variations. Dover, New York (1974) (Reprint of 1952 edition)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Chasman.

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chasman, L.M. An Isoperimetric Inequality for Fundamental Tones of Free Plates. Commun. Math. Phys. 303, 421–449 (2011). https://doi.org/10.1007/s00220-010-1171-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1171-z

Keywords

Navigation