Skip to main content
Log in

Vertex Operators, Grassmannians, and Hilbert Schemes

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We approximate the infinite Grassmannian by finite-dimensional cutoffs, and define a family of fermionic vertex operators as the limit of geometric correspondences on the equivariant cohomology groups, with respect to a one-dimensional torus action. We prove that in the localization basis, these are the well-known fermionic vertex operators on the infinite wedge representation. Furthermore, the boson-fermion correspondence, locality, and intertwining properties with the Virasoro algebra are the limits of relations on the finite-dimensional cutoff spaces, which are true for geometric reasons. We then show that these operators are also, almost by definition, the vertex operators defined by Okounkov and the author in Carlsson and Okounkov (http://arXiv.org/abs/0801.2565v2 [math.AG], 2009), on the equivariant cohomology groups of the Hilbert scheme of points on \({\mathbb C^2}\) , with respect to a special torus action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah M., Bott R.: The moment map and equivariant cohomology. Topology 23, 1–28 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bridgeland T., King A., Reid M.: The McKay correspondence as an equivalence of derived categories. J. Amer. Math. Soc. 14(3), 535–554 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bloch S., Okounkov A.: The character of the infinite wedge representation. Adv. Math. 149(1), 1–60 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Carlsson, E.: Vertex Operators and Moduli Spaces of Sheaves. PhD thesis, Princeton University, 2008

  5. Carlsson, E., Okounkov, A.: Exts and Vertex Operators. http://arXiv.org/abs/0801.2565v2 [math.AG], 2009

  6. Frenkel, E., Ben-Zvi, D.: Vertex algebras and algebraic curves. Mathematical Surveys and Monographs, Vol. 88 , Providence, RI: Amer. Math. Soc., 2001

  7. Göttsche, L.: Hilbert schemes of points on surfaces. ICM Proceedings, Vol. II (Beijing, 2002), Beijing: Higher Ed. Press, 2002, pp. 483–494

  8. Göttsche L.: The Betti numbers of the Hilbert scheme of points on a smooth projective surface. Math. Ann. 286(1–3), 193–207 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Grojnowski I.: Instantons and affine algebras I: the Hilbert scheme and vertex operators. Math. Res. Lett. 3, 275–291 (1996)

    MATH  MathSciNet  Google Scholar 

  10. Haiman M.: Hilbert schemes, polygraphs and the Macdonald positivity conjecture. J. Amer. Math. Soc. 14(4), 941–1006 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Haiman, M.: Combinatorics, symmetric functions and Hilbert schemes. In: Current developments in mathematics, 2002, Somerville, MA: Int. Press, 2003, pp. 39–111

  12. Huybrechts, D., Lehn, M.: The geometry of moduli spaces of sheaves. Aspects of Mathematics, E31. Friedr. Braunschweig: Vieweg & Sohn, 1997

  13. Kaç, V.: Infinite dimensional Lie algebras, third edition. Cambridge: Cambridge University Press, 1990

  14. Lehn, M.: Geometry of Hilbert schemes. In: CRM Proceedings and Lecture Notes, Volume 38, Providence, RI: Amer. Math. Soc., 2004, pp. 1–30

  15. Lehn M.: Chern classes of tautological bundles on Hilbert schemes of points on surfaces. Invent. Math. 136(1), 157–207 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Licata, A., Savage, A.: Vertex operators and the geometry of moduli spaces of framed torsion-free sheaves. http://arXiv.org/abs/0809.4010v3 [math.RT], 2009

  17. Lehn M., Sorger C.: Symmetric groups and the cup product on the cohomology of Hilbert schemes. Duke Math. J. 110, 345–357 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Macdonald I.: Symmetric functions and Hall polynomials. The Clarendon Press/Oxford University Press, New York (1995)

    MATH  Google Scholar 

  19. Nakajima H.: Heisenberg algebra and Hilbert schemes of points on projective surfaces. Ann. of Math. (2) 145(2), 379–388 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Nakajima, H.: Jack polynomials and Hilbert schemes of points on surfaces. http://arXiv.org/abs/alg-geom/9610021v1, 1996

  21. Nakajima, H.: Lectures on Hilbert schemes of points on surfaces. Providence, RI: Amer. Math. Soc., 1999

  22. Nekrasov N.: Seiberg-Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7(5), 831–864 (2003)

    MATH  MathSciNet  Google Scholar 

  23. Nekrasov, N., Okounkov, A.: Seiberg-Witten Theory and Random Partitions. In: The Unity of Mathematics, ed. by Etingof, P., Retakh, V., Singer, I.M., Progress in Mathematics, Vol. 244, Basel-Boston: Birkhäuser, 2006

  24. Okounkov, A.: Random partitions and instanton counting. International Congress of Mathematicians, Vol. III, Zürich: Eur. Math. Soc., 2006, pp. 687–711

  25. Okounkov A., Olshanski G.: Shifted Jack polynomials, binomial formula, and applications. Math. Res. Lett. 4(1), 69–78 (1997)

    MATH  MathSciNet  Google Scholar 

  26. Okounkov, A., Pandharipande, R.: The quantum differential equation of the Hilbert scheme of points in the plane. http://arXiv.org/abs/0906.3587v1 [math.AG], 2009

  27. Vasserot E.: Sur lanneau de cohomologie du schema de Hilbert de C2. C. R. Acad. Sci. Paris, Ser. I Math. 332, 7–12 (2001)

    MATH  MathSciNet  ADS  Google Scholar 

  28. Li W., Qin Z., Wang W.: Vertex algebras and the cohomology ring structure of Hilbert schemes of points on surfaces. Math. Ann. 324, 105–133 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Li, W., Qin, Z., Wang, W.: The cohomology rings of Hilbert schemes via Jack polynomials. CRM Proceedings and Lecture Notes, Vol. 38, Providence, RI: Amer. Math. Soc., 2004, pp. 249–258

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Carlsson.

Additional information

Communicated by N.A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlsson, E. Vertex Operators, Grassmannians, and Hilbert Schemes. Commun. Math. Phys. 300, 599–613 (2010). https://doi.org/10.1007/s00220-010-1123-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1123-7

Keywords

Navigation