Communications in Mathematical Physics

, Volume 300, Issue 1, pp 205–242 | Cite as

Asymptotic Stability, Concentration, and Oscillation in Harmonic Map Heat-Flow, Landau-Lifshitz, and Schrödinger Maps on \({\mathbb R^2}\)

  • Stephen Gustafson
  • Kenji Nakanishi
  • Tai-Peng Tsai
Article

Abstract

We consider the Landau-Lifshitz equations of ferromagnetism (including the harmonic map heat-flow and Schrödinger flow as special cases) for degree m equivariant maps from \({\mathbb {R}^2}\) to \({\mathbb {S}^2}\) . If m ≥ 3, we prove that near-minimal energy solutions converge to a harmonic map as t → ∞ (asymptotic stability), extending previous work (Gustafson et al., Duke Math J 145(3), 537–583, 2008) down to degree m = 3. Due to slow spatial decay of the harmonic map components, a new approach is needed for m = 3, involving (among other tools) a “normal form” for the parameter dynamics, and the 2D radial double-endpoint Strichartz estimate for Schrödinger operators with sufficiently repulsive potentials (which may be of some independent interest). When m = 2 this asymptotic stability may fail: in the case of heat-flow with a further symmetry restriction, we show that more exotic asymptotics are possible, including infinite-time concentration (blow-up), and even “eternal oscillation”.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angenent, S., Hulshof, J.: Singularities at t = ∞ in equivariant harmonic map flow. Contemp. Math. 367, Geometric evolution equations, Providence, RI: Amer. Math. Soc., 2005, pp. 1–15Google Scholar
  2. 2.
    Bejenaru, I., Ionescu, A., Kenig, C., Tataru, D.: Global Schrödinger maps in dimensions d ≥ 2: small data in the critical Sobolev spaces. http://arxiv.org/abs/0807.0265v1 [math.AP], 2008
  3. 3.
    Bergh J., Löfström J.: Interpolation spaces. Springer-Verlag, Berlin-Heidelberg-New York (1976)MATHGoogle Scholar
  4. 4.
    Burq N., Planchon F., Stalker J., Tahvildar-Zadeh S.: Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay. Ind. U. Math. J 53(6), 519–549 (2004)MathSciNetGoogle Scholar
  5. 5.
    Chang K.-C., Ding W.Y., Ye R.: Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Diff. Geom. 36(2), 507–515 (1992)MATHMathSciNetGoogle Scholar
  6. 6.
    Chang N.-H., Shatah J., Uhlenbeck K.: Schrödinger maps. Comm. Pure Appl. Math. 53(5), 590–602 (2000)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Germain P., Shatah J., Zeng C.: Self-similar solutions for the Schrödinger map equation. Math. Z. 264(3), 697–707 (2010)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Grotowski J.F., Shatah J.: Geometric evolution equations in critical dimensions. Calc. Var. Part. Diff. Eqs. 30(4), 499–512 (2007)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Guan, M., Gustafson, S., Kang, K., Tsai, T.-P.: Global Questions for Map Evolution Equations. CRM Proc. Lec. Notes 44, Providence, RI: Amer. Math. Soc., 2008, pp. 61–73Google Scholar
  10. 10.
    Guan M., Gustafson S., Tsai T.-P.: Global existence and blow-up for harmonic map heat flow. J. Diff. Eq. 246, 1–20 (2009)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gustafson S., Kang K., Tsai T.-P.: Schrödinger flow near harmonic maps. Comm. Pure Appl. Math. 60(4), 463–499 (2007)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gustafson S., Kang K., Tsai T.-P.: Asymptotic stability of harmonic maps under the Schrödinger flow. Duke Math. J. 145(3), 537–583 (2008)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kosevich A., Ivanov B., Kovalev A.: Magnetic Solitons. Phys. Rep. 194, 117–238 (1990)CrossRefADSGoogle Scholar
  14. 14.
    Keel M., Tao T.: Endpoint Strichartz estimates. Amer. J. Math. 120, 955–980 (1998)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Machihara S., Nakanishi K., Ozawa T.: Nonrelativistic limit in the energy space for the nonlinear Klein-Gordon equations. Math. Ann. 322(3), 603–621 (2002)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Montgomery-Smith S.J.: Time decay for the bounded mean oscillation of solutions of the Schrödinger and wave equations. Duke Math. J. 91(2), 393–408 (1998)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    O’Neil R.: Convolution operators and L(p,q) spaces. Duke Math. J. 30, 129–142 (1963)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Poláčik P., Yanagida E.: On bounded and unbounded global solutions of a supercritical semilinear heat equation. Math. Ann. 327, 745–771 (2003)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Struwe M.: On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helv. 60, 558–581 (1985)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Tao T.: Spherically averaged endpoint Strichartz estimates for the two-dimensional Schrödinger equation. Comm. PDE 25(7–8), 1471–1485 (2000)MATHGoogle Scholar
  21. 21.
    Topping P.M.: Rigidity in the harmonic map heat flow. J. Diff. Geom. 45, 593–610 (1997)MATHMathSciNetGoogle Scholar
  22. 22.
    Topping P.M.: Winding behaviour of finite-time singularities of the harmonic map heat flow. Math. Z. 247, 279–302 (2004)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Stephen Gustafson
    • 1
  • Kenji Nakanishi
    • 2
  • Tai-Peng Tsai
    • 1
  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  2. 2.Department of MathematicsKyoto UniversityKyotoJapan

Personalised recommendations