Wigner Measures in Noncommutative Quantum Mechanics

Abstract

We study the properties of quasi-distributions or Wigner measures in the context of noncommutative quantum mechanics. In particular, we obtain necessary and sufficient conditions for a phase-space function to be a noncommutative Wigner measure, for a Gaussian to be a noncommutative Wigner measure, and derive certain properties of the marginal distributions which are not shared by ordinary Wigner measures. Moreover, we derive the Robertson-Schrödinger uncertainty principle. Finally, we show explicitly how the set of noncommutative Wigner measures relates to the sets of Liouville and (commutative) Wigner measures.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Antoine J.P.: Dirac formalism and symmetry problems in quantum mechanics. I: General Dirac formalism. J. Math. Phys. 710, 53 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  2. 2

    Antoine J.P.: Dirac formalism and symmetry problems in quantum mechanics. II: Symmetry problems. J. Math. Phys. 710, 2276 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  3. 3

    Bastos C., Bertolami O.: Berry phase in the gravitational quantum well and the Seiberg-Witten map. Phys. Lett. A 372, 5556 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  4. 4

    Bastos C., Bertolami O., Dias N.C., Prata J.N.: Weyl-Wigner formulation of noncommutative quantum mechanics. J. Math. Phys. 49, 072101 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  5. 5

    Bastos C., Bertolami O., Dias N.C., Prata J.N.: Phase-space noncommutative quantum cosmology. Phys. Rev. D 78, 023516 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  6. 6

    Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D.: Deformation theory and quantization I. Deformations of symplectic structures. Ann. Phys. (N. Y.) 111, 61 (1978)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  7. 7

    Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D.: Deformation theory and quantization II. Physical applications. Ann. Phys. (N. Y.) 110, 111 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  8. 8

    Bertolami O., Rosa J.G., Aragão C., Castorina P., Zappalà D.: Noncommutative gravitational quantum well. Phys. Rev. D 72, 025010 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  9. 9

    Bohm, A., Gadella, M.: Dirac kets, Gamow vectors and Gel’fand triplets: the rigged Hilbert space formulation of quantum mechanics. Lectures in mathematical physics at the University of Texas at Austin, Berlin: Springer-Verlag, 1989

  10. 10

    Bordemann M., Neumaier N., Waldmann S.: Homogeneous Fedosov star products on cotangent bundles I. Weyl and standard ordering with differential operator representation. Commun. Math. Phys. 198, 363 (1998)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  11. 11

    Bracken A., Cassinelli G., Wood J.: Quantum symmetries and the Weyl-Wigner product of group representations. J. Phys. A: Math. Gen. 36(4), 1033 (2003)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  12. 12

    Bröcker T., Werner R.F.: Mixed states with positive Wigner functions. J. Math. Phys. 36, 62 (1995)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  13. 13

    Cannas da Silva, A.: Lectures on symplectic geometry, Lecture Notes in Mathematics, Berlin-Heidelberg-NewYork: Springer, 2001

  14. 14

    Carroll S.M., Harvey J.A., Kostelecký V.A., Lane C.D., Okamoto T.: Noncommutative field theory and Lorentz violation. Phys. Rev. Lett. 87, 141601 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  15. 15

    Connes A.: Noncommutative geometry. Academic Press, London-NewYork (1994)

    MATH  Google Scholar 

  16. 16

    Demetrian M., Kochan D.: Quantum mechanics on noncommutative plane. Acta Phys. Slov. 52, 1 (2002)

    Google Scholar 

  17. 17

    Dias N.C., Prata J.N.: Formal solutions of stargenvalue equations. Ann. Phys. (N. Y.) 311, 120 (2004)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  18. 18

    Dias N.C., Prata J.N.: Admissible states in quantum phase space. Ann. Phys. (N. Y.) 313, 110 (2004)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  19. 19

    Dias N.C., Prata J.N.: Generalized Weyl-Wigner map and Vey quantum mechanics. J. Math. Phys. 42, 5565 (2001)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  20. 20

    Dias N.C., Prata J.N.: Time dependent transformations in deformation quantization. J. Math. Phys. 45, 887 (2004)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  21. 21

    Dias N.C., Prata J.N.: Exact master equation for a noncommutative Brownian particle. Ann. Phys. (N.Y.) 324, 73 (2009)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  22. 22

    Dias N.C., Prata J.N.: Narcowich-Wigner spectrum of a pure state. Rep. Math. Phys. 63, 43 (2009)

    MATH  Article  MathSciNet  Google Scholar 

  23. 23

    Douglas M.R., Nekrasov N.A.: Noncommutative field theory. Rev. Mod. Phys. 73, 977 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  24. 24

    Dubin D., Hennings M., Smith T.: Mathematical aspects of Weyl quantization. World Scientific, Singapore (2000)

    MATH  Book  Google Scholar 

  25. 25

    Duval C., Horvathy P.A.: Exotic galilean symmetry in the noncommutative plane and the Landau effect. J. Phys. A 34, 10097 (2001)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  26. 26

    Ellinas D., Bracken A.J.: Phase-space-region operators and the Wigner function: geometric constructions and tomography. Phys. Rev. A 78, 052106 (2008)

    Article  ADS  Google Scholar 

  27. 27

    Fedosov B.: A simple geometric construction of deformation quantization. J. Diff. Geom. 40, 213 (1994)

    MATH  MathSciNet  Google Scholar 

  28. 28

    Fedosov B.: Deformation Quantization and Index Theory. Akademie Verlag, Berlin (1996)

    MATH  Google Scholar 

  29. 29

    Folland G.B.: Harmonic analysis in phase space. Princeton University Press, Princeton, NJ (1989)

    MATH  Google Scholar 

  30. 30

    Gamboa J., Loewe M., Rojas J.C.: Noncommutative quantum mechanics. Phys. Rev. D 64, 067901 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  31. 31

    Gel’fand, I.M., Shilov, G.E., Vilenkin, N.Y.: Generalized Functions. Vols 1-5, New York: Academic Press, 1964–68

  32. 32

    Giedke, G.: Quantum information and continuous variable systems. PhD Thesis, (Innsbruck, 2001)

  33. 33

    de Gosson M., Luef F.: Quantum states and Hardy’s formulation of the uncertainty principle: a symplectic approach. Lett. Math. Phys. 80, 69 (2007)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  34. 34

    de Gosson M.: Symplectic geometry and quantum mechanics. Birkhäuser, Basel (2006)

    MATH  Google Scholar 

  35. 35

    Groenewold H.: On the principles of elementary quantum mechanics. Physica 12, 405 (1946)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  36. 36

    Grubb G.: Distributions and operators. Springer, Berlin-Heidelberg-NewYork (2009)

    MATH  Google Scholar 

  37. 37

    Hörmander L.: The analysis of linear partial differential operators I. Springer-Verlag, Berlin-Heidelberg-NewYork (1983)

    MATH  Google Scholar 

  38. 38

    Horvathy P.A.: The noncommutative Landau problem. Ann. Phys. (N. Y.) 299, 128 (2002)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  39. 39

    Hudson R.L.: When is the Wigner quasi-probability density non-negative?. Rep. Math. Phys. 6, 249 (1974)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  40. 40

    Kastler D.: The C *-algebras of a free boson field. Commun. Math. Phys. 1, 14 (1965)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  41. 41

    Kontsevich M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66, 157 (2003)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  42. 42

    Littlejohn R.G.: The semiclassical evolution of wave packets. Phys. Rep. 138, 193 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  43. 43

    Loupias G., Miracle-Sole S.: C *-algebres des systemes canoniques. Ann. Inst. H. Poincaré 6, 39 (1967)

    MATH  MathSciNet  Google Scholar 

  44. 44

    Madore J.: An introduction to noncommutative differential geometry and its physical applications, 2nd edition. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  45. 45

    Moyal J.: Quantum mechanics as a statistical theory. Proc. Camb. Phil. Soc. 45, 99 (1949)

    MATH  Article  MathSciNet  Google Scholar 

  46. 46

    Muir T., Metzler W.H.: A treatise on the theory of determinants. Courier Dover Publications, NewYork (2003)

    Google Scholar 

  47. 47

    Nair V.P., Polychronakos A.P.: Quantum mechanics on the noncommutative plane and sphere. Phys. Lett. B 505, 267 (2001)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  48. 48

    Narcowich F.J.: Conditions for the convolution of two Wigner distributions to be itself a Wigner distribution. J. Math. Phys. 29, 2036 (1988)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  49. 49

    Pool J.C.: Mathematical aspects of the Weyl correspondence. J. Math. Phys. 7, 66 (1966)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  50. 50

    Roberts J.E.: The Dirac bra and ket formalism. J. Math. Phys. 7, 1097 (1966)

    Article  ADS  Google Scholar 

  51. 51

    Robertson H.P.: The uncertainty principle. Phys. Rev. 34, 163 (1929)

    Article  ADS  Google Scholar 

  52. 52

    Schrödinger E.: Sitzungsber. Preuss. Akad. Wiss. 24, 296 (1930)

    Google Scholar 

  53. 53

    Segal I.E.: Transforms for operators and symplectic automorphisms over a locally compact abelian group. Math. Scand. 13, 31 (1963)

    MATH  MathSciNet  Google Scholar 

  54. 54

    Seiberg N., Witten E.: String theory and noncommutative geometry. JHEP 9909, 032 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  55. 55

    Soto F., Claverie P.: When is the Wigner function of multi-dimensional systems nonnegative?. J. Math. Phys. 24, 97 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  56. 56

    Vey J.: Déformation du crochet de Poisson sur une variété symplectique. Comment. Math. Helvet. 50, 421 (1975)

    MATH  Article  MathSciNet  Google Scholar 

  57. 57

    Wigner E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)

    MATH  Article  ADS  Google Scholar 

  58. 58

    Wilde M., Lecomte P.: Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds. Lett. Math. Phys. 7, 487 (1983)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  59. 59

    Zemanian A.: Distribution theory and transform analysis. Dover, NewYork (1987)

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. C. Dias.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bastos, C., Dias, N.C. & Prata, J.N. Wigner Measures in Noncommutative Quantum Mechanics. Commun. Math. Phys. 299, 709–740 (2010). https://doi.org/10.1007/s00220-010-1109-5

Download citation

Keywords

  • Quantum Mechanic
  • Pure State
  • Marginal Distribution
  • Uncertainty Principle
  • Wigner Function