Skip to main content
Log in

Odd Chern-Simons Theory, Lie Algebra Cohomology and Characteristic Classes

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the generic 3D topological field theory within the AKSZ-BV framework. We use the Batalin-Vilkovisky (BV) formalism to construct explicitly cocycles of the Lie algebra of formal Hamiltonian vector fields and we argue that the perturbative partition function gives rise to secondary characteristic classes. We investigate a toy model which is an odd analogue of Chern-Simons theory, and we give some explicit computation of two point functions and show that its perturbation theory is identical to the Chern-Simons theory. We give a concrete example of the homomorphism taking Lie algebra cocycles to Q-characteristic classes, and we reinterpret the Rozansky-Witten model in this light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov M., Kontsevich M., Schwartz A., Zaboronsky O.: The Geometry of the master equation and topological quantum field theory. Int. J. Mod. Phys. A 12, 1405 (1997)

    Article  MATH  ADS  Google Scholar 

  2. Axelrod, S., Singer, I.M.: Chern-Simons perturbation theory. In: Proceedings of the XXth International Conference on Differential Geometric Methods in Theoretical Physics, Vol. 1, 2 (New York, 1991), River Edge, NJ: World Sci. Publ., 1992, pp. 3–45

  3. Cattaneo A.S., Felder G.: On the AKSZ formulation of the Poisson sigma model. Lett. Math. Phys. 56, 163 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cattaneo, A.S., Qiu, J., Zabzine, M.: 2D and 3D topological field theories for generalized complex geometry. http://arxiv.org/abs/0911.0993v1 [hep-th], 2009

  5. Costello, K.J.: Renormalisation and the Batalin-Vilkovisky formalism. http://arxiv.org/abs/0706.1533v3 [math.QA], 2007

  6. Fuks D.B.: Stable cohomologies of a Lie algebra of formal vector fields with tensor coefficients. Funkts. Anal. i Priloz. 17(4), 62 (1983)

    MathSciNet  Google Scholar 

  7. Fuks D.B.: Cohomology of infinite-dimensional Lie algebras and characteristic classes of foliations. J. Math. Sci. 11, 6 (1979)

    Article  Google Scholar 

  8. Hamilton A., Lazarev A.: Characteristic classes of A algebras. J. Homotopy Relat. Struct. 3(1), 65 (2008)

    MATH  MathSciNet  Google Scholar 

  9. Hamilton A., Lazarev A.: Graph cohomology classes in the Batalin-Vilkovisky formalism. J. Geom. Phys. 59, 555 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Kapranov M.: Rozansky-Witten invariants via Atiyah classes. Compositio Math. 115(1), 71–113 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kontsevich, M.: Formal (non)-commutative symplectic geometry. The Gelfand Mathematical Seminars, 1990–1992, Basel: Birkhäuser, 1993, pp. 173–187

  12. Kontsevich, M.: Feynman diagrams and low-dimensional topology. In: First European Congress of Mathematics, 1992, Paris, Volume II, Progress in Mathematics 120, Basel: Birkhäuser, 1994, pp. 97–121

  13. Kontsevich M.: Rozansky-Witten invariants via formal geometry. Compositio Math. 115, 115 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lyakhovich, S.L., Mosman, E.A., Sharapov, A.A.: Characteristic classes of Q-manifolds: classification and applications. http://arxiv.org/abs/0906.0466v2 [math-ph], 2010

  15. Morita, S.: Geometry of Characteristic Classes. Iwanami Series in Modern Mathematics, Providence, RI: American Mathematical Society, 2001, xiv+185 pp

  16. Qiu J., Zabzine M.: On the AKSZ formulation of the Rozansky-Witten theory and beyond. JHEP 0909, 024 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  17. Roytenberg, D.: On the structure of graded symplectic supermanifolds and Courant algebroids. In: Quantization, Poisson Brackets and Beyond, Theodore Voronov (ed.), Contemp. Math, Vol. 315, Providence, RI: Amer. Math. Soc., 2002

  18. Roytenberg D.: AKSZ-BV formalism and Courant algebroid-induced topological field theories. Lett. Math. Phys. 79, 143 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Rozansky L., Witten E.: Hyper-Kähler geometry and invariants of three-manifolds. Selecta Math. 3, 401 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sawon, J.: Rozansky-Witten Invariants of Hyperkähler Manifolds. PhD thesis, Oxford 1999

  21. Schwarz A.S.: Geometry of Batalin-Vilkovisky quantization. Commun. Math. Phys. 155, 249 (1993)

    Article  MATH  ADS  Google Scholar 

  22. Schwarz A.S.: Quantum observables, Lie algebra homology and TQFT. Lett. Math. Phys. 49, 115 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Voronov, T.: Graded manifolds and Drinfeld doubles for Lie bialgebroids. In: Quantization, Poisson Brackets and Beyond, Theodore Voronov (ed.), Contemp. Math, Vol. 315, Providence, RI: Amer. Math. Soc., 2002

  24. Witten E.: A note on the antibracket formalism. Mod. Phys. Lett. A 5, 487 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Witten E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Qiu.

Additional information

Communicated by A. Kapustin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, J., Zabzine, M. Odd Chern-Simons Theory, Lie Algebra Cohomology and Characteristic Classes. Commun. Math. Phys. 300, 789–833 (2010). https://doi.org/10.1007/s00220-010-1102-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1102-z

Keywords

Navigation