Skip to main content
Log in

Kinetically Constrained Lattice Gases

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Kinetically constrained lattice gases (KCLG) are interacting particle systems which show some of the key features of the liquid/glass transition and, more generally, of glassy dynamics. Their distintictive signature is the following: i) reversibility w.r.t. product i.i.d. Bernoulli measure at any particle density and ii) vanishing of the exchange rate across any edge unless the particle configuration around the edge satisfies a proper constraint besides hard core. Because of degeneracy of the exchange rates the models can show anomalous time decay in the relaxation process w.r.t. the usual high temperature lattice gas models particularly in the so-called cooperative case, when the vacancies have to collectively cooperate in order for the particles to move through the systems. Here we focus on the Kob-Andersen (KA) model, a cooperative example widely analyzed in the physics literature, both in a finite box with particle reservoirs at the boundary and on the infinite lattice. In two dimensions (but our techniques extend to any dimension) we prove a diffusive scaling O(L 2) (apart from logarithmic corrections) of the relaxation time in a finite box of linear size L. We then use the above result to prove a diffusive decay 1/t (again apart from logarithmic corrections) of the density-density time autocorrelation function at any particle density, a result that has been sometimes questioned on the basis of numerical simulations. The techniques that we devise, based on a novel combination of renormalization and comparison with a long-range Glauber type constrained model, are robust enough to easily cover other choices of the kinetic constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldous D., Diaconis P.: The asymmetric one-dimensional constrained Ising model: rigorous results. J. Stat. Phys. 107(5-6), 945–975 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ané, C., Blachère, S., Chafaï, D., Fougères, P., Gentil, I., Malrieu, F., Roberto, C., Scheffer, G.: Sur les inégalités de Sobolev logarithmiques, Paris: Société Mathématique de France, 2000, with a preface by Dominique Bakry and Michel Ledoux

  3. Barrat A., Kurchan J., Loreto V., Sellitto M.: Edwards measures for powders and glasses. Phys. Rev. Lett. 85, 5034–5038 (2000)

    Article  ADS  Google Scholar 

  4. Berthier L., Garrahan J.P., Whitelam S.: Dynamic criticality in glass forming liquids. Phys. Rev. Lett. 92, 185705–185709 (2004)

    Article  ADS  Google Scholar 

  5. Bertini L., Cancrini N., Cesi F.: The spectral gap for a Glauber-type dynamics in a continuous gas. Ann. Inst. H. Poincaré Prob. Stat. 38(1), 91–108 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Bertini L., Toninelli C.: Exclusion processes with degenerate rates: Convergence to equilibrium and tagged particle. J. Stat. Phys. 117, 549–580 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Cancrini N., Martinelli F.: On the spectral gap of Kawasaki dynamics under a mixing condition revisited. J. Math. Phys. 41(3), 1391–1423 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Cancrini, N., Martinelli, F., Roberto, C., Toninelli, C.: Facilitated spin models: recent and new results. Proceedings of Prague summer school 2006 on Mathematical Statistical Mechanics, available at http://arxiv.org/abs/0712.1934v1[math.PR], 2007

  9. Cancrini N., Martinelli F., Roberto C., Toninelli C.: Kinetically constrained spin models. Probab. Th. and Rel. Fields 140, 459–504 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Eisinger S., Jackle J.: A hierarchically constrained kinetic ising model. Z. Phys. B 84, 115–124 (1991)

    Article  ADS  Google Scholar 

  11. Evans M.R., Sollich P.: Glassy time-scale divergence and anomalous coarsening in a kinetically constrained spin chain. Phys. Rev. Lett 83, 3238–3241 (1999)

    Article  ADS  Google Scholar 

  12. Fredrickson G.H., Andersen H.C.: Kinetic ising model of the glass transition. Phys. Rev. Lett. 53, 1244–1247 (1984)

    Article  ADS  Google Scholar 

  13. Goncalves P., Landim C., Toninelli C.: Hydrodinamic limit for a particle system with degenerate rates. Annals of IHP Prob. Stat. 45, 887–909 (2009)

    Article  MathSciNet  Google Scholar 

  14. Grimmett, G.: Percolation. Second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 321, Berlin: Springer-Verlag, 1999

  15. Kob W., Andersen H.C.: Kinetic lattice-gas model of cage effects in high-density liquids and a test of mode-coupling theory of the ideal-glass transition. Phys. Rev. E 48, 4359–4363 (1993)

    Article  ADS  Google Scholar 

  16. Kordzakhia G., Lalley S.: Ergodicity and mixing properties of the northeast models. J. Appl. Probab. 43(3), 782–792 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kurchan J., Peliti L., Sellitto M.: Aging in lattice-gas models with constrained dynamics. Europhys. Lett 39(4), 365–370 (1997)

    Article  ADS  Google Scholar 

  18. Lawlor A., De Gregorio P., Bradley P., Sellitto M., Dawson K.A.: Geometry of dynamically available empty space is the key to near-arrest dynamics. Phys. Rev. E 72, 021401 (2005)

    Article  ADS  Google Scholar 

  19. Liggett T.M.: Interacting particle systems. Springer-Verlag, New York (1985)

    MATH  Google Scholar 

  20. Lu S.L., Yau H.-T.: Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics. Commun. Math. Phys. 156(2), 399–433 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Marinari E., Pitard E.: Spatial correlations in the relaxation of the kob-andersen model. Europhys. Lett. 69(2), 35–241 (2005)

    Article  Google Scholar 

  22. Martinelli, F.: Lectures on Glauber dynamics for discrete spin models, In: Lectures on probability theory and statistics (Saint-Flour, 1997), Berlin: Springer, 1999, pp. 93–191

  23. Quastel J.: Diffusion of color in the simple exclusion process. Comm. Pure Appl. Math. 45(6), 623–679 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ritort F., Sollich P.: Glassy dynamics of kinetically constrained models. Adv. in Phys. 52(4), 219–342 (2003)

    Article  ADS  Google Scholar 

  25. Sellitto M., Arenzon J.J.: Free-volume kinetic models of granular matter. Phys. Rev. E 62, 7793 (2000)

    Article  ADS  Google Scholar 

  26. Franz S., Mulet R., Parisi G.: Kob-andersen model: A nonstandard mechanism for the glassy transition. Phys. Rev. E 65(2), 021506 (1987)

    Article  ADS  Google Scholar 

  27. Toninelli C., Biroli G.: Dynamical arrest, tracer diffusion and kinetically constrained lattice gases. J. Stat. Phys. 117, 7–54 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  28. Toninelli C., Biroli G.: A new class of cellular automata with a discontinuous glass transition. J. Stat. Phys. 130, 83–112 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Toninelli C., Biroli G., Fisher D.S.: Spatial structures and dynamics of kinetically constrained models for glasses. Phys. Rev. Lett. 92(1-2), 185504 (2004)

    Article  ADS  Google Scholar 

  30. Toninelli C., Biroli G., Fisher D.S.: Kinetically constrained lattice gases for glassy systems. J. Stat. Phys. 120(1-2), 167–238 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Martinelli.

Additional information

Communicated by H. Spohn

This work was partially supported by the GRDE GREFI-MEFI, by the French Ministry of Education through the ANR BLAN07-2184264 grant and by the European Research Council through the “Advanced Grant” PTRELSS 228032.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cancrini, N., Martinelli, F., Roberto, C. et al. Kinetically Constrained Lattice Gases. Commun. Math. Phys. 297, 299–344 (2010). https://doi.org/10.1007/s00220-010-1038-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1038-3

Keywords

Navigation