Skip to main content
Log in

Generalized Twisted Modules Associated to General Automorphisms of a Vertex Operator Algebra

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce a notion of a strongly \({\mathbb{C}^{\times}}\)-graded, or equivalently, \({\mathbb{C}/\mathbb{Z}}\)-graded generalized g-twisted V-module associated to an automorphism g, not necessarily of finite order, of a vertex operator algebra. We also introduce a notion of a strongly \({\mathbb{C}}\)-graded generalized g-twisted V-module if V admits an additional \({\mathbb{C}}\)-grading compatible with g. Let \({V=\coprod_{n\in \mathbb{Z}}V_{(n)}}\) be a vertex operator algebra such that \({V_{(0)}=\mathbb{C}\mathbf{1}}\) and V (n) = 0 for n < 0 and let u be an element of V of weight 1 such that L(1)u = 0. Then the exponential of \({2\pi \sqrt{-1}\; {\rm Res}_{x} Y(u, x)}\) is an automorphism g u of V. In this case, a strongly \({\mathbb{C}}\)-graded generalized g u -twisted V-module is constructed from a strongly \({\mathbb{C}}\)-graded generalized V-module with a compatible action of g u by modifying the vertex operator map for the generalized V-module using the exponential of the negative-power part of the vertex operator Y(u, x). In particular, we give examples of such generalized twisted modules associated to the exponentials of some screening operators on certain vertex operator algebras related to the triplet W-algebras. An important feature is that we have to work with generalized (twisted) V-modules which are doubly graded by the group \({\mathbb{C}/\mathbb{Z}}\) or \({\mathbb{C}}\) and by generalized eigenspaces (not just eigenspaces) for L(0), and the twisted vertex operators in general involve the logarithm of the formal variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe T.: A \({\mathbb{Z}\sb 2}\)-orbifold model of the symplectic fermionic vertex operator superalgebra. Math. Z. 255, 755–792 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adamović D., Milas A.: Logarithmic intertwining operators and \({\mathcal{W}(2,2p-1)}\)-algebras. J. Math. Phys. 48, 073503 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  3. Adamović D., Milas A.: On the triplet vertex algebra \({\mathcal{W}(p)}\). Adv. in Math. 217, 2664–2699 (2008)

    MATH  Google Scholar 

  4. Adamović, D., Milas, A.: Lattice construction of logarithmic modules for certain vertex operator algebras. To appear in Selecta Math. http://arXiv.org/abs/0902.3417v1[math.QA], 2009

  5. Bantay P.: Algebraic aspects of orbifold models. Int. J. Mod. Phys. A9, 1443–1456 (1994)

    MathSciNet  ADS  Google Scholar 

  6. Bantay P.: Characters and modular properties of permutation orbifolds. Phys. Lett. B419, 175–178 (1998)

    MathSciNet  ADS  Google Scholar 

  7. Bantay, P.: Permutation orbifolds and their applications. In: Vertex Operator Algebras in Mathematics and Physics, Proc. workshop, Fields Institute for Research in Mathematical Sciences, 2000, ed. by S. Berman, Y. Billig, Y.-Z. Huang, J. Lepowsky, Fields Institute Communications, Vol. 39, Amer. Math. Soc., 2003, pp. 13–23

  8. Barron K., Dong C., Mason G.: Twisted sectors for tensor products vertex operator algebras associated to permutation groups. Commun. Math. Phys. 227, 349–384 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Barron K., Huang Y.-Z., Lepowsky J.: An equivalence of two constructions of permutation-twisted modules for lattice vertex operator algebras. J. Pure Appl. Alg. 210, 797–826 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Borcherds R.: Vertex algebras, Kac-Moody algebras. and the Monster. Proc. Natl. Acad. Sci. USA 83, 3068–3071 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  11. Borisov L., Halpern M., Schweigert C.: Systematic approach to cyclic orbifolds. Int. J. Mod. Phy. A13(1), 125–168 (1998)

    MathSciNet  ADS  Google Scholar 

  12. Carqueville N., Flohr M.: Nonmeromorphic operator product expansion and C 2-cofiniteness for a family of \({\mathcal{W}}\)-algebras. J. Phys. A39, 951–966 (2006)

    MathSciNet  ADS  Google Scholar 

  13. de Boer J., Halpern M., Obers N.: The operator algebra and twisted KZ equations of WZW orbifolds. J. High Energy Phys. 10, 011 (2001)

    Article  Google Scholar 

  14. Dijkgraaf R., Vafa C., Verlinde E., Verlinde H.: The operator algebra of orbifold models. Commun. Math. Phys. 123, 485–526 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Dixon L., Friedan D., Martinec E., Shenker S.: The conformal field theory of orbifolds. Nucl. Phys. B282, 13–73 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  16. Dixon L., Ginsparg P., Harvey J.: Beauty and the beast: Superconformal conformal symmetry in a Monster module. Commun. Math. Phys. 119, 221–241 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  17. Dixon L., Harvey J., Vafa C., Witten E.: Strings on orbifolds. Nucl. Phys. B261, 678–686 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  18. Dixon L., Harvey J., Vafa C., Witten E.: Strings on orbifolds, II. Nucl. Phys. B274, 285–314 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  19. Dolan L., Goddard P., Montague P.: Conformal field theory of twisted vertex operators. Nucl. Phys. B338, 529–601 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  20. Dong C.: Twisted modules for vertex algebras associated with even lattice. J. Alg. 165, 91–112 (1994)

    Article  MATH  Google Scholar 

  21. Dong C., Lepowsky J.: The algebraic structure of relative twisted vertex operators. J. Pure Appl. Alg. 110, 259–295 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Dong C., Li H., Mason G.: Twisted representations of vertex operator algebras. Math. Ann. 310, 571–600 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Dong C., Li H., Mason G.: Modular invariance of trace functions in orbifold theory and generalized moonshine. Commun. Math. Phys. 214, 1–56 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Doyon B., Lepowsky J., Milas A.: Twisted modules for vertex operator algebras and Bernoulli polynomials. Int. Math. Res. Not. 44, 2391–2408 (2003)

    Article  MathSciNet  Google Scholar 

  25. Doyon B., Lepowsky J., Milas A.: Twisted vertex operators and Bernoulli polynomials. Commun. Contemp. Math. 8, 247–307 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Feigin B.L., Gaĭnutdinov A.M., Semikhatov A.M., Tipunin I.Yu.: The Kazhdan-Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic conformal field theories (Russian). Teoret. Mat. Fiz. 148(3), 398–427 (2006)

    MathSciNet  Google Scholar 

  27. Feigin B.L., Gaĭnutdinov A.M., Semikhatov A.M., Tipunin I.Yu.: Logarithmic extensions of minimal models: characters and modular transformations. Nucl. Phys. B757, 303–343 (2006)

    Article  ADS  Google Scholar 

  28. Feigin B.L., Gaĭnutdinov A.M., Semikhatov A.M., Tipunin I.Yu.: Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center. Commun. Math. Phys. 265, 47–93 (2006)

    Article  MATH  ADS  Google Scholar 

  29. Flohr M.: On modular invariant partition functions of conformal field theories with logarithmic operators. Int. J. Mod. Phys. A11, 4147–4172 (1996)

    MathSciNet  ADS  Google Scholar 

  30. Flohr M.: On fusion rules in logarithmic conformal field theories. Int. J. Mod. Phys. A12, 1943–1958 (1996)

    MathSciNet  ADS  Google Scholar 

  31. Flohr M., Gaberdiel M.R.: Logarithmic torus amplitudes. J. Phys. A39, 1955–1968 (2006)

    MathSciNet  ADS  Google Scholar 

  32. Flohr, M., Knuth, H.: On Verlinde-Like formulas in c p, 1 logarithmic conformal field theories. To appear, http://arXiv.org/abs/0705.0545v1[math.ph], 2007

  33. Flohr M., Grabow C., Koehn M.: Fermionic Expressions for the characters of c(p, 1) logarithmic conformal field theories. Nucl. Phys. B768, 263–276 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  34. Frenkel, I., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Memoirs American Math. Soc. 104, 1993

  35. Frenkel I., Lepowsky J., Meurman A.: A natural representation of the Fischer-Griess Monster with the modular function J as character. Proc. Natl. Acad. Sci. USA 81, 3256–3260 (1984)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. Frenkel, I., Lepowsky, J., Meurman, A.: Vertex operator calculus. In: Mathematical Aspects of String Theory, Proc. 1986 Conference, San Diego, ed. by S.-T. Yau, Singapore: World Scientific, 1987, pp. 150–188

  37. Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster. Pure and Applied Math. Vol. 134, London-New York: Academic Press, 1988

  38. Fuchs, J.: On nonsemisimple fusion rules and tensor categories. In: Lie Algebras, Vertex Operator Algebras and their Applications, Proceedings of a conference in honor of James Lepowsky and Robert Wilson, 2005, ed. Y.-Z. Huang, K. Misra, Contemporary Mathematics, Vol. 442, Providence, RI: Amer. Math. Soc., 2007

  39. Fuchs J., Hwang S., Semikhatov A.M., Tipunin I.Yu.: Nonsemisimple Fusion Algebras and the Verlinde Formula. Commun. Math. Phys. 247(3), 713–742 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Fuchs J., Klemm A., Schmidt M.: Orbifolds by cyclic permutations in Gepner type superstrings and in the corresponding Calabi-Yau manifolds. Ann. Phys. 214, 221–257 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. Gaberdiel M.R., Kausch H.G.: Indecomposable fusion products. Nucl. Phys. B477, 298–318 (1996)

    MathSciNet  ADS  Google Scholar 

  42. Gaberdiel M.R., Kausch H.G.: A rational logarithmic conformal field theory. Phys. Lett. B386, 131–137 (1996)

    MathSciNet  ADS  Google Scholar 

  43. Gaberdiel M.R., Runkel I.: The logarithmic triplet theory with boundary. J. Phys. A39, 14745–14780 (2006)

    MathSciNet  ADS  Google Scholar 

  44. Gaberdiel M.R., Runkel I.: From boundary to bulk in logarithmic CFT. J. Phys. A41, 075402 (2008)

    MathSciNet  ADS  Google Scholar 

  45. Gaĭnutdinov A.M., Tipunin I.Yu.: Radford, Drinfeld, and Cardy boundary states in (1,p) logarithmic conformal field models. J. Phys. A42, 315207 (2009)

    ADS  Google Scholar 

  46. Ganor, O., Halpern, M., Helfgott, C., Obers, N.: The outer-automorphic WZW orbifolds on \({\mathfrak{so}(2n)}\), including five triality orbifolds on \({\mathfrak{so}(8)}\). J. High Energy Phys. 12, 019 (2002)

  47. Halpern M., Helfgott C.: The general twisted open WZW string. Int. J. Mod. Phys. A20, 923–992 (2005)

    MathSciNet  ADS  Google Scholar 

  48. Halpern M., Obers N.: Two large examples in orbifold theory: abelian orbifolds and the charge conjugation orbifold on \({\mathfrak{su}(n)}\). Int. J. Mod. Phys. A17, 3897–3961 (2002)

    MathSciNet  ADS  Google Scholar 

  49. Hamidi S., Vafa C.: Interactions on orbifolds. Nucl. Phys. B279, 465–513 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  50. Harvey, J.: Twisting the heterotic string. In: Unified String Theories, Proc. 1985 Inst. for Theoretical Physics Workshop, Ed. by M. Green, D. Gross, Singapore: World Scientific, 1086, pp. 704–718

  51. Huang Y.-Z., Lepowsky J., Zhang L.: A logarithmic generalization of tensor product theory for modules for a vertex operator algebra. Int. J. Math. 17, 975–1012 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  52. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor product theory for generalized modules for a conformal vertex algebra. To appear, http://arXiv.org/abs/0710.2687v3[math.QA], 2007

  53. Kausch H.G.: Extended conformal algebras generated by multiplet of primary fields. Phys. Lett. 259B, 448–455 (1991)

    MathSciNet  ADS  Google Scholar 

  54. Kausch H.G.: Symplectic fermions. Nucl. Phys. B583, 513–541 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  55. Klemm A., Schmidt M.G.: Orbifolds by cyclic permutations of tensor product conformal field theories. Phys. Lett. B245, 53–58 (1990)

    MathSciNet  ADS  Google Scholar 

  56. Lepowsky J.: Calculus of twisted vertex operators. Proc. Nat. Acad. Sci. USA 82, 8295–8299 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  57. Lepowsky, J.: Perspectives on vertex operators and the Monster. In: Proc. 1987 Symposium on the Mathematical Heritage of Hermann Weyl, Duke Univ., Proc. Symp. Pure. Math., Amer. Math. Soc. 48, 181–197 (1988)

  58. Li, H.: Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules. In: Moonshine, the Monster, and related topics Mount Holyoke, 1994, ed. C. Dong, G. Mason, Contemporary Math., Vol. 193, Providence, RI: Amer. Math. Soc., 1996, pp. 203–236

  59. Moore G.: Atkin-Lehner symmetry. Nucl. Phys. B293, 139–188 (1987)

    Article  ADS  Google Scholar 

  60. Nagatomo, K., Tsuchiya, A.: The Triplet Vertex operator algebra W(p) and the restricted quantum group at root of unity, to appear, http://arXiv.org/abs/0902.4607v2[math.QA], 2009

  61. Narain K.S., Sarmadi M.H., Vafa C.: Asymmetric orbifolds. Nucl. Phys. B288, 551–577 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  62. Pearce P.A., Rasmussen J., Ruelle P.: Integrable boundary conditions and \({\mathcal{W}}\)-extended fusion in the logarithmic minimal models \({\mathcal{L} \mathcal{M}(1, p)}\). J. Phys. A41, 295201 (2008)

    MathSciNet  Google Scholar 

  63. Pearce, P.A., Rasmussen, J., Ruelle, P.: Grothendieck ring and Verlinde formula for the \({\mathcal{W}}\)-extended logarithmic minimal model \({\mathcal{WLM}(1,p)}\). To appear, http://arXiv.org/abs/0907.0134v1[hep-th], 2009

  64. Rasmussen, J.:Fusion matrices, generalized Verlinde formulas, and partition functions in \({\mathcal{WLM}(1,p)}\). To appear, http://arXiv.org/abs/0908.2014v2[hep-th], 2009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Zhi Huang.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YZ. Generalized Twisted Modules Associated to General Automorphisms of a Vertex Operator Algebra. Commun. Math. Phys. 298, 265–292 (2010). https://doi.org/10.1007/s00220-010-0999-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-0999-6

Keywords

Navigation