Skip to main content
Log in

Nonabelian Generalized Lax Pairs, the Classical Yang-Baxter Equation and PostLie Algebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We generalize the classical study of (generalized) Lax pairs, the related \({\mathcal O}\) -operators and the (modified) classical Yang-Baxter equation by introducing the concepts of nonabelian generalized Lax pairs, extended \({\mathcal O}\) -operators and the extended classical Yang-Baxter equation. We study in this context the nonabelian generalized r-matrix ansatz and the related double Lie algebra structures. Relationship between extended \({\mathcal O}\) -operators and the extended classical Yang-Baxter equation is established, especially for self-dual Lie algebras. This relationship allows us to obtain an explicit description of the Manin triples for a new class of Lie bialgebras. Furthermore, we show that a natural structure of PostLie algebra is behind \({\mathcal O}\) -operators and fits in a setup of the triple Lie algebra that produces self-dual nonabelian generalized Lax pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler M.: On a trace functional for formal pseudodifferential operators and the symplectic structures for Korteweg-de Vries type equations. Invent. Math. 50, 219–248 (1979)

    Article  MATH  ADS  Google Scholar 

  2. Aguiar M.: Pre-Poisson algebras. Lett. Math. Phys. 54, 263–277 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aguiar, M.: Infinitesimal bialgebras, pre-Lie and dendriform algebras, In: Hopf Algebras. Lecture Notes in Pure and Applied Mathematics 237, London: Taylor and Francis, 2004, pp. 1–33

  4. Babelon, O., Viallet, C.-M.: Integrable models, Yang-Baxter equations, and quantum groups. part I. Ref. S.I.S.S.A. 54 EP (May 89), Preprint Trieste

  5. Babelon O., Viallet C.-M.: Hamiltonian structures and Lax equations. Phys. Lett. B 237, 411–416 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  6. Bai, C., Guo, L., Ni, X.: \({\mathcal O}\) -operators on associative algebras and associative Yang-Baxter equations. http://arxiv.org/abs/0910.3261v1[math.RA], 2009

  7. Baxter G.: An analytic problem whose solution follows from a simple algebraic identity. Pac. J. Math. 10, 731–742 (1960)

    MathSciNet  Google Scholar 

  8. Belavin, A.A., Drinfeld, V.G.: Solutions of the classical Yang-Baxter equation for simple Lie algebras. Funct. Anal. Appl. 16, 159–180 (1982), 17, 220–221 (1983)

    Google Scholar 

  9. Belavin, A.A., Drinfeld, V.G.: Triangle equations and simple Lie algebras. In: Classical Reviews in Mathematics and Mathematical Physics 1, Amsterdam: Harwood Academic Publishers, 1998

  10. Bordemann M.: Generalized Lax pairs, the modified classical Yang-Baxter equation, and affine geometry of Lie groups. Commun. Math. Phys. 135, 201–216 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Burde D.: Left-symmetric algebras, or pre-Lie algebras in geometry and physics. Cent. Eur. J. Math. 4, 323–357 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chapoton F.: Un theéorème de Cartier-Milnor-Moore-Quillen pour les bigébres dendriformes et les algébres braces. J. Pure Appl. Algebra 168, 1–18 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chari V., Pressley A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  14. Connes A., Kreimer D.: Hopf algebras, renormalization and noncommutative geometry. Commun. Math. Phys. 199, 203–242 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Connes A., Kreimer D.: Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210, 249–273 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Diatta A., Medina A.: Classical Yang-Baxter equation and left invariant affine geometry on Lie groups. Manus. Math. 114, 477–486 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Drinfeld V.G.: Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations. Soviet Math. Dokl. 27, 68–71 (1983)

    MathSciNet  Google Scholar 

  18. Drinfeld V.G.: On Poisson homogenous spaces of Poisson-Lie groups. Theor. Math. Phys. 95, 524–525 (1993)

    Article  MathSciNet  Google Scholar 

  19. Ebrahimi-Fard K.: Loday-type algebras and the Rota-Baxter relation. Lett. Math. Phys. 61, 139–147 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ebrahimi-Fard, K., Guo, L.: Rota-Baxter algebras in renormalization of perturbative quantum field theory. In: Universality and Renormalization, Fields Institute Communicatins 50, Providence, RI: Amer. Math. Soc., 2007, pp. 47–105

  21. Faddeev, L.D.: Integrable models in 1 + 1-dimensional quantum field theory. In: Recent Advances in Field Theory and Statistical Mechanics, Les Houches, Amsterdam: Elsevier Science Publishers, 1984, pp. 563–608

  22. Figueroa-O’Farrrill J.M., Stanciu S.: On the structure of symmetric self-dual Lie algebras. J. Math. Phys. 37, 4121–4134 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  23. Guo, L.: Algebraic Birkhoff decomposition and its applications. In: Automorphic Forms and the Langlands Program. International Press, 2008, pp. 283–323

  24. Hodge T.J., Levasseur T.: Primitive ideals of \({\mathbb{C}_q[SL(3)]}\) . Commun. Math. Phys. 156, 581–605 (1993)

    Article  ADS  Google Scholar 

  25. Hodge T.J., Yakimov M.: The double and dual of a quasitriangular Lie bialgebra. Math. Res. Lett. 8, 91–105 (2001)

    MathSciNet  Google Scholar 

  26. Knapp A.W.: Lie Groups Beyond an Introduction. Birkhäuser, Berlin (1996)

    MATH  Google Scholar 

  27. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. New York: Wiley, Vol. I, 1963 and Vol. II, 1969

  28. Kosmann-Schwarzbach, Y.: Lie bialgebras, Poisson Lie groups and dressing transformations. In: InteGrability of Nonlinear Systems. Lecture Notes in Physics 495, Berlin: Springer, 1997, pp. 104–170

  29. Kosmann-Schwarzbach Y., Magri F.: Poisson-Lie groups and complete integrability, I. Drinfeld bialgebras, dual extensions and their canonical representations. Ann. Inst. Henri Poincaré, Phys. Théor. A 49, 433–460 (1988)

    MATH  MathSciNet  Google Scholar 

  30. Kostant B.: The solution to a generalized Toda lattice and representation theory. Adv. Math. 34, 195–338 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kupershmidt B.A.: What a classical r-matrix really is. J. Nonlinear Math. Phy. 6, 448–488 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Lax P.D.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467–490 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  33. Levendorskii S.L., Soibelman Y.S.: Algebras of functions on compact quantum groups, Schubert cells, and quantum tori. Commun. Math. Phys. 139, 141–170 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  34. Liu Z.-J., Qian M.: Generalized Yang-Baxter equations, Koszul operators and Poisson-Lie groups. J. Diff. Geom. 35, 399–414 (1992)

    MATH  MathSciNet  Google Scholar 

  35. Loday, J.-L.: Dialgebras. In: Dialgebras and Related Operads, Lecture Notes in Math. 1763, Berlin: Springer, 2001, pp. 7–66

  36. Loday, J.-L., Ronco, M.: Trialgebras and families of polytopes. In: Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory. Comtemp. Math. 346, 369–398 (2004)

  37. Meng D.J.: Some results on complete Lie algebras. Comm. Algebra 22, 5457–5507 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  38. Milnor J.: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21, 293–329 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  39. Reshetikhin N., Semenov-Tian-Shansky M.: Quantum R-matrices and factorization problems. J. Geom. Phys. 5, 533–550 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  40. Reyman A., Semenov-Tian-Shansky M.: Compatible Poisson structures for Lax equations: an r-matrix approach. Phys. Lett. A 130, 456–460 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  41. Reyman, A., Semenov-Tian-Shansky, M.: Group-theoretical methods in the theory of finite-dimensional integrable systems. In: Integrable Systems II. Dynamical Systems VII, Encyclopaedia of Math. Sciences, Vol. 16. Berlin: Springer-Verlag, 1994, pp. 116–220

  42. Ronco, M.: Primitive elements in a free dendriform algebra. In: New Trends in Hopf Algebra Theory (La Falda, 1999). Contemp. Math. 267, 245–263 (2000)

  43. Rota, G.-C.: Baxter operators, an introduction. In: Gian-Carlo Rota on Combinatorics: Introductory Papers and Commentaries, Joseph P.S. Kung, Ed., Boston: Birkhäuser, 1995, pp. 504–512

  44. Semenov-Tian-Shansky M.: What is a classical R-matrix? Funct. Anal. Appl. 17, 259–272 (1983)

    Article  Google Scholar 

  45. Semenov-Tian-Shansky M.: Dressing transformations and Poisson group actions. Publ. RIMS, Kyoto Univ. 21, 1237–1260 (1985)

    Article  MathSciNet  Google Scholar 

  46. Sklyanin, E.K.: On complete integrability of the Landau-Lifschitz equation. Preprint Leningr. Otd. Mat. Inst. E-3-79 (1979)

  47. Sklyanin, E.K.: The quantum inverse scattering method. Zap. Nauch. Sem. LOMI 95, 55–128 (1980)

    Google Scholar 

  48. Stolin A.: Some remarks on Lie bialgebra structures on simple complex Lie algebras. Comm. Algebra 27, 4289–4302 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  49. Symes W.: Systems of Toda type, inverse spectral problems, and representation theory. Invent. Math. 59, 13–51 (1980)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  50. Symes W.: Hamiltonian group actions and integrable systems. Physica D 1, 339–374 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  51. Vaisman, I.: Lecture on the Geometry of Poisson Manifolds. Progress in Mathematics 118, Basel: Birkhäuser Verlag, 1994

  52. Vallette B.: Homology of generalized partition posets. J. Pure Appl. Algebra 208, 699–725 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  53. Yakimov M.: Symplectic leaves of complex reductive Poisson-Lie groups. Duke Math. J. 112, 453–509 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Ni.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, C., Guo, L. & Ni, X. Nonabelian Generalized Lax Pairs, the Classical Yang-Baxter Equation and PostLie Algebras. Commun. Math. Phys. 297, 553–596 (2010). https://doi.org/10.1007/s00220-010-0998-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-0998-7

Keywords

Navigation