Skip to main content
Log in

Langlands Duality for Representations and Quantum Groups at a Root of Unity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give a representation-theoretic interpretation of the Langlands character duality of [FH], and show that the “Langlands branching multiplicities” for symmetrizable Kac-Moody Lie algebras are equal to certain tensor product multiplicities. For finite type quantum groups, the connection with tensor products can be explained in terms of tilting modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen H.H.: The strong linkage principle for quantum groups at roots of 1. J. Alg. 260, 2–15 (2003)

    Article  MATH  Google Scholar 

  2. Andersen H.H.: Tensor products of quantized tilting modules. Commun. Math. Phys. 159, 149–159 (1992)

    Article  ADS  Google Scholar 

  3. Andersen H.H., Paradowski J.: Fusion categories arising from semisimple Lie algebras. Commun. Math. Phys. 169, 563–588 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Andersen H., Polo P., Wen K.: Representations of quantum algebras. Invent. Math. 104, 1–53 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Andersen H., Polo P., Wen K.: Injective modules for quantum groups. Amer. J. Math. 114, 571–604 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berenstein A., Zelevinsky A.: Tensor product multiplicities, canonical bases and totally positive varieties. Invent. Math. 143, 77–128 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Frenkel, E., Hernandez, D.: Langlands duality for representations of quantum groups. http://arXiv.org/abs/0809.4453v3[math.QA], 2008

  8. Frenkel, E., Hernandez, D.: Langlands duality for finite-dimensional representations of quantum affine algebras. http://arXiv.org/abs/09.2.0447v2[math.QA], 2009

  9. Frenkel E., Mukhin E.: The q-characters at a root of unity. Adv. Math. 171(1), 139–167 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kac V.: Infinite dimensional Lie algebras 3rd ed. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  11. Kaneda M.: Based modules and good filtrations in algebraic groups. Hiroshima Math. J. 28, 337–344 (1998)

    MATH  MathSciNet  Google Scholar 

  12. Kaneda M.: Cohomology of infinitesimal quantum algebras. J. Alg. 226, 250–282 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kashiwara M.: Similarity of crystal bases. Cont. Math. 194, 177–186 (1996)

    MathSciNet  Google Scholar 

  14. Kashiwara, M.: Bases cristallines des groupes quantiques, Edited by Charles Cochet. Cours Spécialisés, 9. Paris: Société Mathématique de France, 2002

  15. Kumar S., Littelmann P.: Algebraization of Frobenius splitting via quantum groups. Ann. of Math. (2) 155(2), 491–551 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kumar, S., Stembridge, J.: Special Isogenies and Tensor Product Multiplicities. Int. Math. Res. Not. 2007, Article ID rnm081, 13 pp.

  17. Littelmann P.: Path and root operators in Representation Theory. Ann. of Math. (2) 142, 499–525 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Littelmann P.: Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras. J. Amer. Math. Soc. 11(3), 551–567 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lusztig G.: Quantum groups at roots of 1. Geom. Dedicata 35, 89–114 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lusztig G.: Introduction to Quantum Groups. Birkhäuser, Boston (1993)

    MATH  Google Scholar 

  21. McGerty K.: Generalized q-Schur algebras and quantum Frobenius. Adv. Math. 214(1), 116–131 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Steinberg R.: The isomorphism and isogeny theorems for reductive algebraic groups. J. Alg. 216, 366–383 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin McGerty.

Additional information

Communicated by Y. Kawahigashi

Supported by a Royal Society University Research Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGerty, K. Langlands Duality for Representations and Quantum Groups at a Root of Unity. Commun. Math. Phys. 296, 89–109 (2010). https://doi.org/10.1007/s00220-010-0993-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-0993-z

Keywords

Navigation