Abstract
The Schrödinger equation with a potential periodically varying in time is used to model adiabatic quantum pumps. The systems considered may be either infinitely extended and gapped or finite and connected to gapless leads. Correspondingly, two descriptions of the transported charge, one relating to a Chern number and the other to a scattering matrix, have been available for some time. Here we generalize the first one and establish its equivalence to the second.
Similar content being viewed by others
References
Avron J.E., Elgart A., Graf G.M., Sadun L.: Transport and dissipation in quantum pumps. J. Stat. Phys. 116, 425–473 (2004)
Avron J.E., Elgart A., Graf G.M., Sadun L., Schnee K.: Adiabatic charge pumping in open quantum systems. Comm. Pure Appl. Math. 57, 528–561 (2004)
Avron J.E., Seiler R., Yaffe L.G.: Adiabatic theorems and applications to the quantum Hall effect. Commun. Math. Phys. 110, 33–49 (1987)
Avron J.E., Seiler R., Yaffe L.G.: Erratum: “Adiabatic theorems and applications to the quantum Hall effect”. Commun. Math. Phys. 156, 649–650 (1993)
Blumenthal M.D., Kaestner B., Li L., Giblin S., Janssen T.J.B.M., Pepper M., Anderson D., Jones G., Ritchie D.A.: Gigahertz quantized charge pumping. Nat. Phys. 3, 343–347 (2007)
Brouwer P.W.: Scattering approach to parametric pumping. Phys. Rev. B 58, R10135 (1998)
Büttiker M., Thomas H., Prêtre A.: Current partition in multiprobe conductors in the presence of slowly oscillating external potentials. Z. Phys. B 94, 133–137 (1994)
Chern C.H., Onoda S., Murakami S., Nagaosa N.: Quantum charge pumping and electric polarization in Anderson insulators. Phys. Rev B 76, 035334 (2007)
Clark S., Gesztesy F.: On Povzner-Wienholtz-type self-adjointness results for matrix-valued Sturm-Liouville operators. Proc. Roy. Soc. Edinburgh Sect. A 133, 747–758 (2003)
Graf G.M., Ortelli G.: Comparison of quantization of charge transport in periodic and open pumps. Phys. Rev. B 77, 033304 (2008)
Ivanov D.A., Lee H.W., Levitov L.S.: Coherent states of alternating current. Phys. Rev. B 56, 6839–6850 (1997)
Leek P.J., Buitelaar M.R., Talyanskii V.I., Smith C.G., Anderson D., Jones G.A.C., Wei J., Cobden D.H.: Phys. Rev. Lett. 95, 256802 (2005)
Lesch M., Malamud M.: On the deficiency indices and self-adjointness of symmetric Hamiltonian systems. J. Diff. Eqs. 189, 556–615 (2003)
Lidskii V.B.: On the number of solutions with integrable square of differential equations. Dokl. Akad. Nauk SSSR 95, 217–220 (1954) (in Russian)
Nenciu G.: Linear adiabatic theory. Exponential estimates. Commun. Math. Phys. 152, 479–496 (1993)
Niu Q., Thouless D.J.: Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction. J. Phys. A 17, 2453–2462 (1984)
Shilton J.M., Talyanskii V.I., Pepper M., Ritchie D.A., Frost J.E.F., Ford C.J.B., Smith C.G., Jones G.A.C.: J. Phys. C 8, L531–L539 (1996)
Simon, B.: Trace Ideals and Their Applications. 2nd edition, Providence, RI: Amer. Math. Soc., 2005
Thouless D.J.: Quantisation of particle transport. Phys. Rev. B 27, 6083–6087 (1983)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M. Aizenman
Rights and permissions
About this article
Cite this article
Bräunlich, G., Graf, G.M. & Ortelli, G. Equivalence of Topological and Scattering Approaches to Quantum Pumping. Commun. Math. Phys. 295, 243–259 (2010). https://doi.org/10.1007/s00220-009-0983-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-009-0983-1