Skip to main content
Log in

Equivalence of Topological and Scattering Approaches to Quantum Pumping

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Schrödinger equation with a potential periodically varying in time is used to model adiabatic quantum pumps. The systems considered may be either infinitely extended and gapped or finite and connected to gapless leads. Correspondingly, two descriptions of the transported charge, one relating to a Chern number and the other to a scattering matrix, have been available for some time. Here we generalize the first one and establish its equivalence to the second.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avron J.E., Elgart A., Graf G.M., Sadun L.: Transport and dissipation in quantum pumps. J. Stat. Phys. 116, 425–473 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Avron J.E., Elgart A., Graf G.M., Sadun L., Schnee K.: Adiabatic charge pumping in open quantum systems. Comm. Pure Appl. Math. 57, 528–561 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Avron J.E., Seiler R., Yaffe L.G.: Adiabatic theorems and applications to the quantum Hall effect. Commun. Math. Phys. 110, 33–49 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Avron J.E., Seiler R., Yaffe L.G.: Erratum: “Adiabatic theorems and applications to the quantum Hall effect”. Commun. Math. Phys. 156, 649–650 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Blumenthal M.D., Kaestner B., Li L., Giblin S., Janssen T.J.B.M., Pepper M., Anderson D., Jones G., Ritchie D.A.: Gigahertz quantized charge pumping. Nat. Phys. 3, 343–347 (2007)

    Article  Google Scholar 

  6. Brouwer P.W.: Scattering approach to parametric pumping. Phys. Rev. B 58, R10135 (1998)

    Article  ADS  Google Scholar 

  7. Büttiker M., Thomas H., Prêtre A.: Current partition in multiprobe conductors in the presence of slowly oscillating external potentials. Z. Phys. B 94, 133–137 (1994)

    Article  ADS  Google Scholar 

  8. Chern C.H., Onoda S., Murakami S., Nagaosa N.: Quantum charge pumping and electric polarization in Anderson insulators. Phys. Rev B 76, 035334 (2007)

    Article  ADS  Google Scholar 

  9. Clark S., Gesztesy F.: On Povzner-Wienholtz-type self-adjointness results for matrix-valued Sturm-Liouville operators. Proc. Roy. Soc. Edinburgh Sect. A 133, 747–758 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Graf G.M., Ortelli G.: Comparison of quantization of charge transport in periodic and open pumps. Phys. Rev. B 77, 033304 (2008)

    Article  ADS  Google Scholar 

  11. Ivanov D.A., Lee H.W., Levitov L.S.: Coherent states of alternating current. Phys. Rev. B 56, 6839–6850 (1997)

    Article  ADS  Google Scholar 

  12. Leek P.J., Buitelaar M.R., Talyanskii V.I., Smith C.G., Anderson D., Jones G.A.C., Wei J., Cobden D.H.: Phys. Rev. Lett. 95, 256802 (2005)

    Article  ADS  Google Scholar 

  13. Lesch M., Malamud M.: On the deficiency indices and self-adjointness of symmetric Hamiltonian systems. J. Diff. Eqs. 189, 556–615 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lidskii V.B.: On the number of solutions with integrable square of differential equations. Dokl. Akad. Nauk SSSR 95, 217–220 (1954) (in Russian)

    MathSciNet  Google Scholar 

  15. Nenciu G.: Linear adiabatic theory. Exponential estimates. Commun. Math. Phys. 152, 479–496 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Niu Q., Thouless D.J.: Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction. J. Phys. A 17, 2453–2462 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  17. Shilton J.M., Talyanskii V.I., Pepper M., Ritchie D.A., Frost J.E.F., Ford C.J.B., Smith C.G., Jones G.A.C.: J. Phys. C 8, L531–L539 (1996)

    Google Scholar 

  18. Simon, B.: Trace Ideals and Their Applications. 2nd edition, Providence, RI: Amer. Math. Soc., 2005

  19. Thouless D.J.: Quantisation of particle transport. Phys. Rev. B 27, 6083–6087 (1983)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Graf.

Additional information

Communicated by M. Aizenman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bräunlich, G., Graf, G.M. & Ortelli, G. Equivalence of Topological and Scattering Approaches to Quantum Pumping. Commun. Math. Phys. 295, 243–259 (2010). https://doi.org/10.1007/s00220-009-0983-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0983-1

Keywords

Navigation