Abstract
The hydrodynamic limit for the Boltzmann equation is studied in the case when the limit system, that is, the system of Euler equations contains contact discontinuities. When suitable initial data is chosen to avoid the initial layer, we prove that there exist a family of solutions to the Boltzmann equation globally in time for small Knudsen number. And this family of solutions converge to the local Maxwellian defined by the contact discontinuity of the Euler equations uniformly away from the discontinuity as the Knudsen number ε tends to zero. The proof is obtained by an appropriately chosen scaling and the energy method through the micro-macro decomposition.
Similar content being viewed by others
References
Asona F., Ukai S.: The Euler limit and the initial layer of the nonlinear Boltzmann equation. Hokkaido Math. J. 12, 303–324 (1983)
Atkinson F.V., Peletier L.A.: Similarity solutions of the nonlinear diffusion equation. Arch. Rat. Mech. Anal. 54, 373–392 (1974)
Bardos, C., Golse, F., Levermore, D.: Fluid dynamic limits of kinetic equations, I. Formal derivations. J. Stat. Phys. 63, 323–344 (1991); II. Convergence proofs for the Boltzmann equation. Comm. Pure Appl. Math. 46, 667–753 (1993)
Boltzmann, L.: (translated by Stephen G. Brush),: Lectures on Gas Theory. New York: Dover Publications, Inc., 1964
Caflish R.E.: The fluid dynamical limit of the nonlinear Boltzmann equation. Comm. Pure Appl. Math. 33, 491–508 (1980)
Cercignani C., Illner R., Pulvirenti M.: The Mathematical Theory of Dilute Gases. Springer-Verlag, Berlin (1994)
Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases. Cambridge: Cambridge University Press, 3rd edition, 1990
Diperna R.J., Lions P.L.: On the Cauchy problem for Boltzmann equation: global existence and weak stability. Ann. Math. 130, 321–366 (1989)
Duyn C.T., Peletier L.A.: A class of similarity solution of the nonlinear diffusion equation. Nonlinear Anal., T.M.A. 1, 223–233 (1977)
Esposito, R., Pulvirenti, M.: From Particle to Fluids. Handbook of mathematical fluid dynamics, in press
Goodman J.: Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Rat. Mech. Anal. 95(4), 325–344 (1986)
Goodman J., Xin Z.: Viscous limits for piecewise smooth solutions to systems of conservation laws. Arch. Rat. Mech. Anal. 121(3), 235–265 (1992)
Grad, H.: Asymptotic theory of the Boltzmann equation II, In: Rarefied Gas Dynamics, J. A. Laurmann, ed., Vol. 1, New York: Academic Press, 1963, pp. 26–59
Guo Y.: The Boltzmann equation in the whole space. Indiana Univ. Math. J. 53(4), 1081–1094 (2004)
Huang F.M., Matsumura A., Shi X.: On the stability of contact discontinuity for compressible Navier-Stokes equations with free boundary. Osaka J. Math. 41(1), 193–210 (2004)
Huang F.M., Matsumura A., Xin Z.P.: Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations. Arch. Rat. Mech. Anal. 179(1), 55–77 (2006)
Huang F.M., Wang Y.: Large time behavior of the Boltzmann equation with specular reflective boundary conditions. J. Diff. Eqs. 242(2), 399–429 (2007)
Huang F.M., Xin Z.P., Yang T.: Contact discontinuities with general perturbation for gas motion. Adv. Math. 219(4), 1246–1297 (2008)
Huang F.M., Zhao H.J.: On the global stability of contact discontinuity for compressible Navier-Stokes equations. Rend. Sem. Mat. Univ. Padova 109, 283–305 (2003)
Kawashima S., Matsumura A.: Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion. Commun. Math. Phys. 101(1), 97–127 (1985)
Lachowicz M.: On the initial layer and existence theorem for the nonlinear Boltzmann equation. Math. Methods Appl. Sci. 9(3), 342–366 (1987)
Liu T.P.: Nonlinear stability of shock waves for viscous conservation laws. Mem. Amer. Math. Soc. 56(329), 1–108 (1985)
Liu T.P., Xin Z.P.: Pointwise decay to contact discontinuities for systems of viscous conservation laws. Asian J. Math. 1, 34–84 (1997)
Liu T.P., Yang T., Yu S.H.: Energy method for the Boltzmann equation. Physica D 188(3-4), 178–192 (2004)
Liu T.P., Yang T., Yu S.H., Zhao H.J.: Nonlinear stability of rarefaction waves for the Boltzmann equation. Arch. Rat. Mech. Anal. 181(2), 333–371 (2006)
Liu T.P., Yu S.H.: Boltzmann equation: Micro-macro decompositions and positivity of shock profiles. Commun. Math. Phys. 246(1), 133–179 (2004)
Matsumura A., Nishihara K.: On the stability of traveling wave solutions of a one-dimensional model system for compressible viscous gas. Japan J. Appl. Math. 2(1), 17–25 (1985)
Maxwell, J.C.: The Scientific Papers of James Clerk Maxwell. Cambridge University Press, 1890: (a) On the dynamical theory of gases, Vol. II, p. 26. (b) On stresses in rarefied gases arising from inequalities of temperature, Vol. II, p. 681
Nishida T.: Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation. Commun. Math. Phys. 61, 119–148 (1978)
Smoller J.: Shock Waves and Reaction-diffusion Equations. Springer, New York (1994)
Ukai S.: On the existence of global solutions of mixed problem for non-linear Boltzmann equation. Proc. Japan Acad. 50, 179–184 (1974)
Ukai S.: Les solutions globales de l′équation de Boltzmann dans l′espace tout entier et dans le demi-espace. C.R. Acad. Sci. Paris 282, 317–320 (1976)
Xin, Z.P.: On nonlinear stability of contact discontinuities. In: Hyperbolic Problems: Theory, Numerics, Applications (Stony Brook, NY, 1994), River Edge, NJ: World Sci. Publishing, River Edge, NJ, 1996, pp. 249–257
Xin Z.P.: Zero dissipation limit to rarefaction waves for the one-dimentional Navier-Stokes equations of compressible isentropic gases. Commun. Pure Appl. Math XLVI, 621–665 (1993)
Yu S.H.: Hydrodynamic limits with shock waves of the Boltzmann equations. Commun. Pure Appl. Math. 58(3), 409–443 (2005)
Yang T., Zhao H.J.: A half space problem to the Boltzmann equaiton. Commun. Math. Phys. 268(3), 569–605 (2006)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by H. Spohn
Rights and permissions
About this article
Cite this article
Huang, F., Wang, Y. & Yang, T. Hydrodynamic Limit of the Boltzmann Equation with Contact Discontinuities. Commun. Math. Phys. 295, 293–326 (2010). https://doi.org/10.1007/s00220-009-0966-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-009-0966-2