Skip to main content
Log in

A Monoidal Category for Perturbed Defects in Conformal Field Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Starting from an abelian rigid braided monoidal category \({\mathcal{C}}\) we define an abelian rigid monoidal category \({\mathcal{C}_F}\) which captures some aspects of perturbed conformal defects in two-dimensional conformal field theory. Namely, for V a rational vertex operator algebra we consider the charge-conjugation CFT constructed from V (the Cardy case). Then \({\mathcal{C} = {\rm Rep}(V)}\) and an object in \({\mathcal{C}_F}\) corresponds to a conformal defect condition together with a direction of perturbation. We assign to each object in \({\mathcal{C}_F}\) an operator on the space of states of the CFT, the perturbed defect operator, and show that the assignment factors through the Grothendieck ring of \({\mathcal{C}_F}\). This allows one to find functional relations between perturbed defect operators. Such relations are interesting because they contain information about the integrable structure of the CFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachas C., Gaberdiel M.R.: Loop operators and the Kondo problem. JHEP 0411, 065 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  2. Brunner I., Herbst M., Lerche W., Scheuner B.: Landau-Ginzburg realization of open string TFT. JHEP 0611, 043 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bakalov, B., Kirillov, A.A.: Lectures on Tensor Categories and Modular Functors. Providence, RI: Amer. Math. Soc. 2001

  4. Bazhanov V.V., Lukyanov S.L., Zamolodchikov A.B.: Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz. Commun. Math. Phys. 177, 381–398 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bazhanov V.V., Lukyanov S.L., Zamolodchikov A.B.: Integrable structure of conformal field theory II. Q-operator and DDV equation. Commun. Math. Phys. 190, 247–278 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bazhanov V.V., Lukyanov S.L., Zamolodchikov A.B.: Integrable structure of conformal field theory. III: The Yang-Baxter relation. Commun. Math. Phys. 200, 297–324 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Belavin A.A., Polyakov A.M., Zamolodchikov A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333–380 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Bruguières A.: Catégories prémodulaires, modularisations et invariants des variétés de dimension 3. Math. Annal. 316, 215–236 (2000)

    Article  MATH  Google Scholar 

  9. Brunner I., Roggenkamp D.: B-type defects in Landau-Ginzburg models. JHEP 0708, 093 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  10. Bytsko, A., Teschner, J.: The integrable structure of nonrational conformal field theory. http://arxiv.org/abs/0902.4825v2, 2009

  11. Cardy J.L.: Boundary conditions, fusion rules and the Verlinde formula. Nucl. Phys. B 324, 581–596 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  12. Calaque D., Etingof P.: Lectures on tensor categories. IRMA Lect. Math. Theor. Phys. 12, 1–38 (2008)

    MathSciNet  Google Scholar 

  13. Chari V., Pressley A.: Quantum affine algebras. Commun. Math. Phys. 142, 261–283 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Dorey P., Dunning C., Tateo R.: The ODE/IM Correspondence. J. Phys. A 40, R205 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Dotsenko V.S., Fateev V.A.: Four-point correlation functions and the operator algebra in 2D conformal invariant theories with central charge c ≤ 1. Nucl. Phys. B 251, 691 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  16. Dorey P., Pocklington A., Tateo R., Watts G.: TBA and TCSA with boundaries and excited states. Nucl. Phys. B 525, 641–663 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Fendley P., Saleur H.: Exact perturbative solution of the Kondo problem. Phys. Rev. Lett. 75, 4492–4495 (1995)

    Article  ADS  Google Scholar 

  18. Felder G., Fröhlich J., Fuchs J., Schweigert C.: Correlation functions and boundary conditions in RCFT and three-dimensional topology. Compos. Math. 131, 189–238 (2002)

    Article  MATH  Google Scholar 

  19. Fröhlich J., King C.: The Chern-Simons Theory And Knot Polynomials. Commun. Math. Phys. 126, 167–199 (1989)

    Article  ADS  MATH  Google Scholar 

  20. Fröhlich J., Fuchs J., Runkel I., Schweigert C.: Kramers-Wannier duality from conformal defects. Phys. Rev. Lett. 93, 070601 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  21. Fröhlich J., Fuchs J., Runkel I., Schweigert C.: Duality and defects in rational conformal field theory. Nucl. Phys. B 763, 354–430 (2007)

    Article  ADS  MATH  Google Scholar 

  22. Fuchs J., Runkel I., Schweigert C.: TFT construction of RCFT correlators. I: Partition functions. Nucl. Phys. B 646, 353–497 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Fuchs J., Runkel I., Schweigert C.: TFT construction of RCFT correlators. III: Simple currents. Nucl. Phys. B 694, 277–353 (2004)

    MathSciNet  ADS  MATH  Google Scholar 

  24. Fuchs J., Runkel I., Schweigert C.: TFT construction of RCFT correlators. IV: Structure constants and correlation functions. Nucl. Phys. B 715, 539–638 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Fuchs J., Runkel I., Schweigert C.: The fusion algebra of bimodule categories. Appl. Cat. Str. 16, 123–140 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fuchs J., Schweigert C.: Category theory for conformal boundary conditions. Fields Inst. Comm. 39, 25–70 (2003)

    MathSciNet  Google Scholar 

  27. Graham K.: On perturbations of unitary minimal models by boundary condition changing operators. JHEP 0203, 028 (2002)

    Article  ADS  Google Scholar 

  28. Furlan, P., Ganchev, A.C., Petkova, V.B.: Fusion matrices and c <  1 (quasi)local conformal theories. Int. J. Mod. Phys. A 5, 2721–2735 (1990) [Erratum-ibid. A 5, 3641 (1990)]

  29. Hayashi, T.: A canonical Tannaka duality for finite semisimple tensor categories. http://arxiv.org/abs/math/9904073v2[math.QA], 1999

  30. Huang, Y.-Z., Lepowsky, J.: Tensor products of modules for a vertex operator algebra and vertex tensor categories. In: Lie Theory and Geometry, in honor of Bertram Kostant, ed. R. Brylinski, J.-L. Brylinski, V. Guillemin, V. Kac, Boston: Birkhäuser, 1994, pp. 349–383

  31. Huang Y.-Z.: Virasoro vertex operator algebras, the (nonmeromorphic) operator product expansion and the tensor product theory. J. Alg. 182, 201–234 (1996)

    Article  MATH  Google Scholar 

  32. Huang Y.-Z.: Rigidity and modularity of vertex tensor categories. Commun. Contemp. Math. 10, 871–911 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Inoue, R., Iyama, O., Kuniba, A., Nakanishi, T., Suzuki, J.: Periodicities of T-systems and Y-systems. http://arxiv.org/abs/0812.0667v3[math.QA], 2009

  34. Kapustin A., Li Y.: D-Branes in Landau-Ginzburg Models and Algebraic Geometry. JHEP 0312, 005 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  35. Kuniba A., Nakanishi T., Suzuki J.: Functional relations in solvable lattice models. 1: Functional relations and representation theory. Int. J. Mod. Phys. A 9, 5215–5266 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Korff C.: Auxiliary matrices for the six-vertex model at roots of 1 and a geometric interpretation of its symmetries. J. Phys. A 36, 5229–5266 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Kong, L., Runkel, I.: Algebraic structures in euclidean and minkowskian two-dimensional conformal field theory. http://arxiv.org/abs/0902.3829v1[math-ph], 2009

  38. Lazaroiu C.I.: On the boundary coupling of topological Landau-Ginzburg models. JHEP 0505, 037 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  39. Mac Lane S.: Categories for the Working Mathematician. 2nd ed., Springer, Berlin-Heidelberg-NewYork (1998)

    MATH  Google Scholar 

  40. Moore, G.W., Seiberg, N.: Lectures On RCFT. In: “Strings ’89”, Proceedings of the Trieste Spring School on Superstrings, M. Green, et al. Eds. Sigapore: World Scientific, 1990

  41. Nahm, W.: Conformal field theory and torsion elements of the Bloch group. http://arxiv.org/abs/hep-th/0404120v1, 2004

  42. Petkova V.B., Zuber J.B.: Generalised twisted partition functions. Phys. Lett. B 504, 157–164 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Petkova V.B., Zuber J.B.: The many faces of Ocneanu cells. Nucl. Phys. B 603, 449–496 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Runkel, I., Suszek, R.R.: Gerbe-holonomy for surfaces with defect networks. http://arxiv.org/abs/0808.1419v1[hep-th], 2008

  45. Rowell, E., Stong, R., Wang, Z.: On classification of modular tensor categories. http://arxiv.org/abs/0712.1377v3[math.QA], 2007

  46. Runkel I.: Perturbed defects and T-systems in conformal field theory. J. Phys. A 41, 105401 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  47. Rossi M., Weston R.: A Generalized Q-operator for \({U_q(\widehat{sl}_2)}\) Vertex Models. J. Phys. A 35, 10015–10032 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Schweigert, C., Fuchs, J., Runkel, I.: Categorification and correlation functions in conformal field theory. http://arxiv.org/abs/math/0602079v1, 2006

  49. Turaev V.G.: Quantum Invariants of Knots and 3-manifolds. de Gruyter, Berlin (1994)

    MATH  Google Scholar 

  50. Wang W.: Rationality of Virasoro vertex operator algebras. Intern. Math. Res. Notices 7, 197–211 (1993)

    Article  Google Scholar 

  51. Witten E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Runkel.

Additional information

Communicated by A. Kapustin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manolopoulos, D., Runkel, I. A Monoidal Category for Perturbed Defects in Conformal Field Theory. Commun. Math. Phys. 295, 327–362 (2010). https://doi.org/10.1007/s00220-009-0958-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0958-2

Keywords

Navigation