Skip to main content
Log in

The Uncanny Precision of the Spectral Action

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Noncommutative geometry has been slowly emerging as a new paradigm of geometry which starts from quantum mechanics. One of its key features is that the new geometry is spectral in agreement with the physical way of measuring distances. In this paper we present a detailed introduction with an overview on the study of the quantum nature of space-time using the tools of noncommutative geometry. In particular we examine the suitability of using the spectral action as an action functional for the theory. To demonstrate how the spectral action encodes the dynamics of gravity we examine the accuracy of the approximation of the spectral action by its asymptotic expansion in the case of the round sphere S 3. We find that the two terms corresponding to the cosmological constant and the scalar curvature term already give the full result with remarkable accuracy. This is then applied to the physically relevant case of S 3 × S 1, where we show that the spectral action in this case is also given, for any test function, by the sum of two terms up to an astronomically small correction, and in particular all higher order terms a 2n vanish. This result is confirmed by evaluating the spectral action using the heat kernel expansion where we check that the higher order terms a 4 and a 6 both vanish due to remarkable cancelations. We also show that the Higgs potential appears as an exact perturbation when the test function used is a smooth cutoff function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Milnor J.: Eigenvalues of the Laplace operator on certain manifolds. Proc. Natl. Acad. Sci. USA. 51(4), 542 (1964)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Connes, A.: On the spectral characterization of manifolds. To appear, available at http://arxiv.org/abs/0810.2088v1[math.OA], 2008

  3. Connes A.: Gravity coupled with matter and the foundation of noncommutative geometry. Commun. Math. Phys. 182, 155–176 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Barrett J.: The Lorentzian version of the noncommutative geometry model of particle physics. J. Math. Phys. 48, 012303 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  5. Connes A.: Noncommutative geometry and the standard model with neutrino mixing. JHEP 0611, 081 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  6. Chamseddine A., Connes A.: Why the Standard Model. J. Geom. Phys. 58, 38–47 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Chamseddine A., Connes A.: Conceptual explanation for the algebra in the noncommutative approach to the standard model. Phys. Rev. Lett. 99, 191601 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  8. Chamseddine A., Connes A.: The Spectral action principle. Commun. Math. Phys. 186, 731–750 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Chamseddine A., Connes A., Marcolli M.: Gravity and the standard model with neutrino mixing. Adv. Theor. Math. 11, 991–1090 (2007)

    MATH  MathSciNet  Google Scholar 

  10. Chamseddine A., Connes A.: Scale invariance in the spectral action. J. Math. Phys. 47, 063504 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  11. Chamseddine A., Connes A.: Quantum gravity boundary terms from the spectral action of noncommutative space. Phys. Rev. Lett. 99, 071302 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  12. Gibbons G., Hawking S.: Action integrals and partition functions in quantum gravity. Phys. Rev. D 15, 2752 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  13. Ashtekar A., Engle J., Sloan D.: Asymptotics and Hamiltonians in a first order formalism. Class. Quant. Grav. 25, 095020 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  14. van der Bij, J., van Dam, H., Ng, Y.: Physica A 116, 307 (1982); Wilczek, F., Zee, A.: In: High Energy Physics, ed. Mintz, S., Perlmutter, A.: New York: Plenum, 1985; S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)

  15. Reuter M.: Nonperturbative evolution equation for quantum gravity. Phys. Rev. D 57, 971 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  16. Dou D., Percacci R.: The running gravitational couplings. Class. Quant. Grav. 15, 3449 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Percacci R.: Renormalization group, systems of units and the hierarchy problem. J. Phys. A40, 4895 (2007)

    MathSciNet  ADS  Google Scholar 

  18. Chamseddine, A., Connes, A.: Uncovering the noncommutative geometry of space-time: a user manual for physicists. To appear

  19. Hambye T., Riesselmann K.: Matching conditions and upper bounds for Higgs masses revisited. Phys. Rev. D55, 7255 (1997)

    ADS  Google Scholar 

  20. Isidori G., Rychkov V., Sturmia A., Tetradis N.: Gravitational corrections to the standard model vacuum decay. Phys. Rev. D77, 025034 (2008)

    ADS  Google Scholar 

  21. Coleman S., Weinberg E.: Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D7, 1888 (1973)

    ADS  Google Scholar 

  22. Buchmüller W., Busch C.: Symmetry breaking and mass bounds in the standard model with hidden scale invariance. Nucl. Phys. B349, 71 (1991)

    Article  ADS  Google Scholar 

  23. Gilkey P.: Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem. Publish or Perish, Wilmington, DE (1984)

    MATH  Google Scholar 

  24. Lawson, H.B., Michelsohn, M-L.: Spin Geometry, Princeton Mathematical Series 38, Princeton, NJ: Princeton University Press, 1989

  25. Weinberg S.: Gravitation and Cosmology, pp. 389–390. J. Wiley, New York (1972)

    Google Scholar 

  26. Trautman, A.: Spin structures on hypersurfaces and spectrum of Dirac ooperators on spheres. In: Spinors, Twistors, Clifford Algebras and Quantum Deformations. Dordrecht: Kluver Academic Publishers, 1993

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Connes.

Additional information

Communicated by A. Kapustin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamseddine, A.H., Connes, A. The Uncanny Precision of the Spectral Action. Commun. Math. Phys. 293, 867–897 (2010). https://doi.org/10.1007/s00220-009-0949-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0949-3

Keywords

Navigation