Skip to main content
Log in

Cosmological Post-Newtonian Expansions to Arbitrary Order

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove the existence of a large class of one parameter families of solutions to the Einstein-Euler equations that depend on the singular parameter \({\epsilon=v_T/c}\) \({(0< \epsilon < \epsilon_0)}\), where c is the speed of light, and v T is a typical speed of the gravitating fluid. These solutions are shown to exist on a common spacetime slab \({M\cong [0,T)\times \mathbb {T}^3}\), and converge as \({\epsilon \searrow 0}\) to a solution of the cosmological Poisson-Euler equations of Newtonian gravity. Moreover, we establish that these solutions can be expanded in the parameter \({\epsilon}\) to any specified order with expansion coefficients that satisfy \({\epsilon}\)-independent (nonlocal) symmetric hyperbolic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blanchet, L.: Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries. Living Rev. Relativity 9, (2006), 4, available at http://www.livingreviews.org/lrr-2006-4

  2. Brauer U., Karp L.: Local existence of classical solutions of the system using weighted sobolev spaces of fractional order. Les Comptes l’Académie des Sciences / Série Math. 345, 49–54 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Brauer U., Rendall A., Reula O.: The cosmic no-hair theorem and the nonlinear stability of homogeneous Newtonian cosmological models. Class. Quant. Grav. 11, 2283–2296 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Browning G., Kreiss H.O.: Problems with different time scales for nonlinear partial differential equations. SIAM J. Appl. Math. 42, 704–718 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chugreev Y.V.: Post-Newtonian approximation of the relativistic theory of gravitation on a cosmological background. Theor. Math. Phys. 82, 328–333 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deimling K.: Nonlinear Functional Analysis. Springer-Verlag, Berlin (1998)

    Google Scholar 

  7. Futamase T.: Averaging of a locally inhomogeneous realistic universe. Phys. Rev. D 53, 681–689 (1996)

    Article  ADS  Google Scholar 

  8. Futamase, T., Itoh, Y.: The Post-Newtonian Approximation for Relativistic Compact Binaries. Living Rev. Relativity 10 (2007), 2, available at http://www.livingreviews.org/lrr-2007-2

  9. Hwang J., Noh H.: Newtonian versus relativistic nonlinear cosmology. Gen. Rel. Grav. 38, 703–710 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Hwang J., Noh H., Puetzfeld D.: Cosmological nonlinear hydrodynamics with post-Newtonian corrections. JCAP 3, 10 (2008)

    ADS  Google Scholar 

  11. Heilig U.: On the Existence of rotating stars in general relativity. Commun. Math. Phys. 166, 457–493 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Iriondo M.S., Leguizamón E.O., Reula O.A.: Fast and slow solutions in general relativity: the initialization procedure. J. Math. Phys. 39, 1555–1565 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Ishibashi A., Wald R.M.: Can the acceleration of our universe be explained by the effects of inhomogeneities?. Class. Quant. Grav. 23, 235–250 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Klainerman S., Majda A.: Compressible and incompressible fluids. Comm. Pure Appl. Math. 35, 629–651 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Kreiss H.O.: Problems with different time scales for partial differential equations. Comm. Pure Appl. Math. 33, 399–439 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kreiss H.O.: Problems with different time scales. Acta Numerical 1, 101–139 (1991)

    Article  MathSciNet  Google Scholar 

  17. Künzle H.P.: Covariant Newtonian limit of Lorentz space-times. Gen. Rel. Grav. 7, 445–457 (1976)

    ADS  MATH  Google Scholar 

  18. Lottermoser M.: A convergent post-Newtonian approximation for the constraints in general relativity. Ann. Inst. Henri Poincaré 57, 279–317 (1992)

    MathSciNet  MATH  Google Scholar 

  19. Matarrese S., Terranova D.: Post-Newtonian cosmological dynamics in Lagrangian coordinates. Mon. Not. Roy. Astron. Soc. 283, 400–418 (1996)

    ADS  Google Scholar 

  20. Oliynyk T.A.: The Newtonian limit for perfect fluids. Commun. Math. Phys. 276, 131–188 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Oliynyk T.A.: Post-Newtonian expansions for perfect fluids. Commun. Math. Phys. 288, 847–886 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Oliynyk, T.A.: The fast Newtonian limit for perfect fluids. http://arxiv.org/abs/0908.4455u1[gr-qc], 2009

  23. Rendall A.D.: On the definition of post-Newtonian approximations. Proc. R. Soc. Lond. A 438, 341–360 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Rendall A.D.: The Newtonian limit for asymptotically flat solutions of the Vlasov-Einstein system. Commun. Math. Phys. 163, 89–112 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Rüede C., Straumann N.: On Newton-Cartan cosmology. Helv. Phys. Acta 70, 318–335 (1997)

    MathSciNet  ADS  MATH  Google Scholar 

  26. Schochet S.: Symmetric hyperbolic systems with a large parameter. Comm. Part. Diff. Eqs. 11, 1627–1651 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schochet S.: Asymptotics for symmetric hyperbolic systems with a large parameter. J. Diff. Eqs. 75, 1–27 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shibata M., Asada H.: Post-Newtonian equations of motion in the flat universe. Prog. Theor. Phys. 94, 11–31 (1995)

    Article  ADS  Google Scholar 

  29. Takada M., Futamase T.: Post-Newtonian Lagrangian perturbation approach to the large-scale structure formation. Mon. Not. R. Astron. Soc. 306, 64–88 (1999)

    Article  ADS  Google Scholar 

  30. Taylor M.E.: Partial differential equations III, nonlinear equations. Springer, New York (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd A. Oliynyk.

Additional information

Communicated by P. T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliynyk, T.A. Cosmological Post-Newtonian Expansions to Arbitrary Order. Commun. Math. Phys. 295, 431–463 (2010). https://doi.org/10.1007/s00220-009-0931-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0931-0

Keywords

Navigation