Skip to main content
Log in

Back to Balls in Billiards

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a billiard in the plane with periodic configuration of convex scatterers. This system is recurrent, in the sense that almost every orbit comes back arbitrarily close to the initial point. In this paper we study the time needed to get back in an ε-ball about the initial point, in the phase space and also for the position, in the limit when ε → 0. We establish the existence of an almost sure convergence rate, and prove a convergence in distribution for the rescaled return times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abadi M., Galves A.: Inequalities for the occurrence times of rare events in mixing processes. The state of art. Markov Process. Related Fields 7, 97–112 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Barreira L., Saussol B.: Hausdorff dimension of measures via Poincaré recurrence. Commun. Math. Phys. 219, 443–464 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bressaud X., Zweimüller R.: Non exponential law of entrance times in asymptotically rare events for intermittent maps with infinite invariant measure. Ann. I.H.P. Phys. Th. 2, 1–12 (2001)

    Google Scholar 

  4. Bunimovich L., Sinai Y.: Markov partitions for dispersed billiards. Commun. Math. Phys. 78, 247–280 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bunimovich L., Sinai Y.: Statistical properties of Lorentz gas with periodic configuration of scatterers. Commun. Math. Phys. 78, 479–497 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bunimovich, L., Chernov, N., Sinai, Y.: Markov partitions for two-dimensional hyperbolic billiards. Russ. Math. Surv. 45(3), 105–152 (1990); translation from Usp. Mat. Nauk 45(3), 97–134 (273) (1990)

    Google Scholar 

  7. Bunimovich, L., Chernov, N., Sinai, Y.: Statistical properties of two-dimensional hyperbolic billiards. Russ. Math. Surv. 46(4), 47–106 (1991); translation from Usp. Mat. Nauk 46(4), 43–92(280) (1991)

    Google Scholar 

  8. Collet P., Galves A., Schmitt B.: Repetition time for gibsiann source. Nonlinearity 12, 1225–1237 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Conze J.-P.: Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications. Erg. Th. Dyn. Syst. 19(5), 1233–1245 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dolgopyat D., Szász D., Varjú T.: Recurrence properties of planar Lorentz process. Duke Math. J. 142, 241–281 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dvoretzky, A., Erdös, P.: Some problems on random walk in space. Proc. Second Berkeley Sympos. Math. Statist. Probab., Berkeley, CA: Univ. California Press, 1951, pp. 353–367

  12. Galatolo S., Kim D.-H., Park K.: The recurrence time for ergodic systems with infinite invariant measures. Nonlinearity 19, 2567–2580 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Gallavotti G., Ornstein D.S.: Billiards and Bernoulli schemes. Commun. Math. Phys. 38, 83–101 (1974)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Guivarc’h Y., Hardy J.: Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d’Anosov. Ann. Inst. H. Poincaré (B), Probabilité et Statistiques 24, 73–98 (1988)

    MathSciNet  MATH  Google Scholar 

  15. Hirata M., Saussol B., Vaienti S.: Statistics of return times: a general framework and new applications. Commun. Math. Phys. 206, 33–55 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Katok A., Hasselblatt B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge Univ. Press, Cambridge (1995)

    MATH  Google Scholar 

  17. Katok, A., Strelcyn, J.-M. (with Ledrappier, F., Przytycki, F.): Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities. Springer Lecture Notes in Mathematics 1222, Berlin-Heidelberg-NewYork: Springer, 1986

  18. Nagaev, S.V.: Some limit theorems for stationary Markov chains. Theor. Probab. Appl. 2, 378–406 (1957); translation from Teor. Veroyatn. Primen. 2, 389–416 (1958)

  19. Nagaev, S.V.: More exact statement of limit theorems for homogeneous Markov chains. Theor. Probab. Appl. 6, 62–81 (1961); translation from Teor. Veroyatn. Primen 6, 67–86 (1961)

  20. Pène F.: Applications des propriétés stochastiques du billard dispersif. C. R. Acad. Sci., Paris, Sér. I, Math. 330(12), 1103–1106 (2000)

    ADS  MATH  Google Scholar 

  21. Pène F.: Planar Lorentz process in a random scenery. Ann. I.H.P. Prob. Stat. 45(3), 818–839 (2009)

    Article  MATH  Google Scholar 

  22. Pène F.: Asymptotic of the number of obstacles visited by the planar Lorentz process. Disc. Cont. Dyn. Sys. A 24(2), 567–587 (2009)

    Article  MATH  Google Scholar 

  23. Pène, F., Saussol, B.: Quantitative recurrence in two-dimensional extended processes. Ann. I.H.P. Prob. Stat., to appear, http://www.imstat.org/aihp/pdf/AIHP195.pdf, 2009

  24. Saussol B.: Recurrence rate in rapidly mixing dynamical systems. Disc. and Cont. Dyn. Sys. 15, 259–267 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schmidt K.: On joint recurrence. C. R. Acad. Sci., Paris, Sér. I, Math. 327(9), 837–842 (1998)

    ADS  MATH  Google Scholar 

  26. Simányi, N.: Towards a proof of recurrence for the Lorentz process. Dyn. sys. and erg. th., 28th Sem. St. Banach Int. Math. Cent., (Warsaw/Pol. 1986), Banach Cent. Publ. 23, 265–276 (1989)

  27. Sinai Y.: Dynamical systems with elastic reflections. Russ. Math. Surv. 25(2), 137–189 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  28. Szász D., Varjú T.: Local limit theorem for the Lorentz process and its recurrence in the plane. Erg. Th. Dyn. Syst. 24(1), 257–278 (2004)

    Article  MATH  Google Scholar 

  29. Young L.-S.: Statistical properties of dynamical systems with some hyperbolicity. Ann. of Math. 147, 585–650 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Saussol.

Additional information

Communicated by G. Gallavotti

Françoise Pène is partially supported by the ANR project TEMI (Théorie Ergodique en mesure infinie).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pène, F., Saussol, B. Back to Balls in Billiards. Commun. Math. Phys. 293, 837–866 (2010). https://doi.org/10.1007/s00220-009-0911-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0911-4

Keywords

Navigation