Skip to main content
Log in

Convergence to SPDEs in Stratonovich Form

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the perturbation of parabolic operators of the form ∂ t  + P(x, D) by large-amplitude highly oscillatory spatially dependent potentials modeled as Gaussian random fields. The amplitude of the potential is chosen so that the solution to the random equation is affected by the randomness at the leading order. We show that, when the dimension is smaller than the order of the elliptic pseudo-differential operator P(x, D), the perturbed parabolic equation admits a solution given by a Duhamel expansion. Moreover, as the correlation length of the potential vanishes, we show that the latter solution converges in distribution to the solution of a stochastic parabolic equation with multiplicative noise that should be interpreted in the Stratonovich sense. The theory of mild solutions for such stochastic partial differential equations is developed.

The behavior described above should be contrasted to the case of dimensions larger than or equal to the order of the elliptic pseudo-differential operator P(x, D). In the latter case, the solution to the random equation converges strongly to the solution of a homogenized (deterministic) parabolic equation as is shown in [2]. A stochastic limit is obtained only for sufficiently small space dimensions in this class of parabolic problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bal G.: Central limits and homogenization in random media. Multiscale Model. Simul. 7(2), 677–702 (2008)

    Article  MathSciNet  Google Scholar 

  2. Bal, G.: Homogenization with large spatial random potential, Submitted, 2009. available at http://www.columbia.edu/~gb2030/PAPERS/large-potential-homogenization.pdf, 2009

  3. Bardina X., Jolis M.: Weak convergence to the multiple Stratonovich integral. Stochastic Processes Appl. 90, 277–300 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Budhiraja A., Kallianpur G.: Two results on multiple Stratonovich integrals. Statistica Sinica 7, 907–922 (1997)

    MATH  MathSciNet  Google Scholar 

  5. Carmona R.A., Molchanov S.A.: Parabolic Anderson problem and intermittency. Mem. Amer. Math. Soc. 108(518), 125 (1994)

    MathSciNet  Google Scholar 

  6. Dalang R.C.: Extending the martingale measure stochastic integral with applications to spatially homogeneous S.P.D.E.’s. Electron. J. Probab. 26, 1–29 (1999)

    Google Scholar 

  7. Delgado R., Sanz M.: The Hu-Meyer formula for non deterministic kernels. Stochastics Stochastics Rep. 38, 149–158 (1992)

    MATH  MathSciNet  Google Scholar 

  8. Figari R., Orlandi E., Papanicolaou G.: Mean field and Gaussian approximation for partial differential equations with random coefficients. SIAM J. Appl. Math. 42, 1069–1077 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Holden, H., Øksendal, B., Ubøe, J., Zhang, T.: Stochastic partial differential equations. A modeling, white noise functional approach. Prob. Appl., Boston, MA: Birkhäuser, 1996

  10. Hu Y.: Chaos expansion of heat equations with white noise potentials. Potential Anal. 16, 45–66 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hu, Y.Z., Meyer, P.-A.: Chaos de Wiener et intégrale de Feynman. In: Séminaire de Probabilités, XXII, Vol. 1321 of Lecture Notes in Math.; Berlin: Springer, pp. 51–71, 1988

  12. Itô, K.: Foundations of stochastic differential equations in infinite-dimensional spaces. Vol. 47 of CBMS-NSF Regional Conference Series in Applied Mathematics, Philadelphia, PA:SIAM, 1984

  13. Johnson G.W., Kallianpur G.: Homogeneous chaos, p-forms, scaling and the feynman integral. Trans. Amer. Math. Soc. 340, 503–548 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jolis M.: On a multiple Stratonovich-type integral for some Gaussian processes. J. Theoret. Probab. 19, 121–133 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nualart D., Rozovskii B.: Weighted stochastic sobolev spaces and bilinear spdes driven by space-time white noise. J. Funct. Anal. 149, 200–225 (1997)

    Article  MathSciNet  Google Scholar 

  16. Nualart D., Zakai M.: Generalized Brownian functionals and the solution to a stochastic partial differential equation. J. Funct. Anal. 84, 279–296 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nualart D., Zakai M.: On the relation between the stratonovich and ogawa integrals. Ann. Probab 17, 1536–1540 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pardoux E., Piatnitski A.: Homogenization of a singular random one dimensional PDE. GAKUTO Internat. Ser. Math. Sci. Appl. 24, 291–303 (2006)

    MathSciNet  Google Scholar 

  19. Reed M., Simon B.: Methods of modern mathematical physics. I. Functional analysis. 2nd ed. Academic Press, Inc., New York (1980)

    MATH  Google Scholar 

  20. Solé J.L., Utzet F.: Stratonovich integral and trace. Stochastics Stochastics Rep. 2, 203–220 (1990)

    Google Scholar 

  21. Taylor M.E.: Partial Differential Equations I. Springer Verlag, New York (1997)

    Google Scholar 

  22. Walsh, J.B.: An introduction to stochastic partial differential equations. École d’été de probabilités de Saint-Flour, XIV—1984, Vol. 1180 of Lecture Notes in Math., Berlin: Springer, pp. 265–439, 1986

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Bal.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bal, G. Convergence to SPDEs in Stratonovich Form. Commun. Math. Phys. 292, 457–477 (2009). https://doi.org/10.1007/s00220-009-0898-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0898-x

Keywords

Navigation