Skip to main content
Log in

Combinatorics of Dispersionless Integrable Systems and Universality in Random Matrix Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is well-known that the partition function of the unitary ensembles of random matrices is given by a τ-function of the Toda lattice hierarchy and those of the orthogonal and symplectic ensembles are τ-functions of the Pfaff lattice hierarchy. In these cases the asymptotic expansions of the free energies given by the logarithm of the partition functions lead to the dispersionless (i.e. continuous) limits for the Toda and Pfaff lattice hierarchies. There is a universality between all three ensembles of random matrices, one consequence of which is that the leading orders of the free energy for large matrices agree. In this paper, this universality, in the case of Gaussian ensembles, is explicitly demonstrated by computing the leading orders of the free energies in the expansions. We also show that the free energy as the solution of the dispersionless Toda lattice hierarchy gives a solution of the dispersionless Pfaff lattice hierarchy, which implies that this universality holds in general for the leading orders of the unitary, orthogonal, and symplectic ensembles.

We also find an explicit formula for the two point function F nm which represents the number of connected ribbon graphs with two vertices of degrees n and m on a sphere. The derivation is based on the Faber polynomials defined on the spectral curve of the dispersionless Toda lattice hierarchy, and \({\frac{1}{nm}F_{nm}}\) are the Grunsky coefficients of the Faber polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler M., van Moerbeke P.: Vertex operator solutions of the discrete KP-hierarchy. Commun. Math. Phys. 203, 185–210 (1999)

    Article  MATH  ADS  Google Scholar 

  2. Adler M., van Moerbeke P.: Toda versus Pfaff lattice and related polynomials. Duke Math. J. 112, 1–58 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Adler M., Shiota T., van Moerbeke P.: Pfaff τ-functions. Math. Ann. 322, 423–476 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aoyama S., Kodama Y.: Topological Landau-Ginzburg theory with a rational potential and the dispersionless KP hierarchy. Commun. Math. Phys. 182, 185–219 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Bessis D., Itzykson C., Zuber J.B.: Quantum field theory techniques in graphical enumeration. Adv. Applied Math. 1, 109–157 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  6. Biondini G., Kodama Y.: On a family of solutions of the Kadomtsev-Petviashvili equation which also satisfy the Toda lattice hierarchy. J. Phys. A: Math. Gen. 36, 10519–10536 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Bryc W., Pierce V.U.: Duality of real and quaternionic random matrices. Electron. J. Probab. 14, 452–476 (2009)

    MathSciNet  Google Scholar 

  8. Chen, Y.-T., Tu, M.-H.: On kernel formulas and dispersionless Hirota equations of the extended dispersionless BKP hierarchy. J. Math. Phys. 47, 102702 (1–19) (2006)

  9. Caroll R., Kodama Y.: Solution of the dispersionless Hirota equations. J. Phys. A: Math. Gen. 28, 6373–6387 (1995)

    Article  ADS  Google Scholar 

  10. Collins, B., Guionnet, A., Maurel-Segala, E.: Asymptotics of unitary and orthogonal matrix integrals. http://arxiv.org/abs/math/0608193v3[math.PR], 2008

  11. Date, E., Kashiwara, M., Jimbo, M., Miwa, T.: Transformation groups for soliton equations. In: Nonlinear Integrable Systems - Classical Theory and Quantum Theory, Singapore: World Scientific, 1983, pp. 39–119

  12. Deift P., Gioev D.: Universality in random matrix theory for orthogonal and symplectic ensembles. IMRP 2, 116 (2007)

    Google Scholar 

  13. Deift P., Gioev D.: Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices. Comm. Pure Appl. Math. 60, 867–910 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dubrovin, B.A.: Integrable systems and classification of 2-dimensional topological field theories. In: Integrable Systems, Prog. Math. 115, Boston: Birkhäuser, 1993, pp. 313–359

  15. Ercolani N.M., McLaughlin K.T.-R.: Asymptotics of the partition function for random matrices via Riemann-Hilbert techniques, and applications to graphical enumeration. IMRN 14, 755–820 (2003)

    Article  MathSciNet  Google Scholar 

  16. Ercolani N.M., McLaughlin K.T.-R., Pierce V.U.: Random matrices, graphical enumeration and the continuum limit of Toda lattices. Commun. Math. Phys. 278, 31–81 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Goulden I.P., Harer J.L., Jackson D.M.: A geometric parametrization for the virtual Euler characteristics of the moduli spaces of real and complex algebraic curves. Trans. Amer. Math. Soc. 353, 4405–4427 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hirota R., Ohta Y.: Hierarchies of coupled soliton equations. I. J. Phys. Soc. Japan 60, 798–809 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Jackson D.M.: On an integral representation for the genus series for 2-cell embeddings. Trans. Amer. Math. Soc. 344, 755–772 (1993)

    Article  Google Scholar 

  20. Jimbo M., Miwa T.: Soliton equations and infinite dimensional Lie algebras. Publ. RIMS, Kyoto University, 19, 943–1001 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kakei S.: Orthogonal and symplectic matrix integrals and coupled KP hierarchy. J. Phys. Soc. Japan 68, 2875–2877 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  22. Kodama, Y., Pierce, V.U.: Geometry of the Pfaff lattices. Inter. Math. Res. Notes, 2007, art.Drnm120, doi:10.1093/imrn/rnm120 (1–55), 2007

  23. Kodama, Y., Pierce, V.U.: The Pfaff lattice on symplectic matrices. http://arxiv.org/abs/[nlin.SI], 2009

  24. Krichever I.M.: The τ-function of the unversal Whitham hierarchy, matrix models and topological field theories. Comm. Pure Appl. Math. 47, 437–475 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kwak J.H., Lee J.: Genus polynomials of dipoles. Kyungpook Math. J. 33, 115–125 (1993)

    MATH  MathSciNet  Google Scholar 

  26. Marshakov A., Wiegmann P., Zabrodin A.: Integrable structure of the Dirichlet boundary proble in two dimensions. Commun. Math. Phys. 227, 131–153 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Mehta M.L.: Random Matrices 3rd ed. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  28. Mingo, J.A., Speicher, R., Tian, E.: Second order cumulants of products. (arXiv:0708.0586)

  29. Mulase M., Waldron A.: Duality of orthogonal and symplectic matrix integrals and quaternionic Feynman graphs. Comm. Math. Phys. 240, 553–586 (2003)

    MATH  ADS  MathSciNet  Google Scholar 

  30. Schur I.: On Faber polynomials. Amer. J. Math. 67, 33–41 (1945)

    Article  MATH  MathSciNet  Google Scholar 

  31. Shcherbina M.: On the universality for orthogonal ensembles of random matrice. Commun. Math. Phys. 285, 257–974 (2009)

    Article  MathSciNet  Google Scholar 

  32. Takasaki, K.: Differential Fay identities and auxiliary linear problem of integrable hierarchies. http://arxiv.org/abs/0710.5356v4[nlin.SI], 20

  33. Takasaki K., Takebe T.: Integrable hierarchies and dispersionless limit. Rev. Mod. Pfys. 7, 743–808 (1995)

    MATH  MathSciNet  Google Scholar 

  34. Teo L.-P.: Analytic functions and integrable hierarchies - Characterization of tau functions. Lett. Math. Phys. 64, 75–92 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Wiegmann P.B., Zabrodin A.: Conformal maps and integrable hierarchies. Commun. Math. Phys. 213, 523–538 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. Zabrodin A.: The dispersionless limit of the Hirota equations in some problems of complex analysis. Teoret. Mat. Fiz. 129, 239–257 (2001)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Kodama.

Additional information

Communicated by L. Takhtajan

Both authors are partially supported by NSF grant DMS0806219.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kodama, Y., Pierce, V.U. Combinatorics of Dispersionless Integrable Systems and Universality in Random Matrix Theory. Commun. Math. Phys. 292, 529–568 (2009). https://doi.org/10.1007/s00220-009-0894-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0894-1

Keywords

Navigation