The Ginibre Ensemble of Real Random Matrices and its Scaling Limits

Abstract

We give a closed form for the correlation functions of ensembles of a class of asymmetric real matrices in terms of the Pfaffian of an antisymmetric matrix formed from a 2 × 2 matrix kernel associated to the ensemble. We apply this result to the real Ginibre ensemble and compute the bulk and edge scaling limits of its correlation functions as the size of the matrices becomes large.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Akemann G., Kanzieper E.: Integrable structure of Ginibre’s ensemble of real random matrices and a pfaffian integration theorem. J. Stat. Phys. 129, 1159–1231 (2007)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  2. 2

    Bai Z.D.: Circular law. Ann. Probab. 25(1), 494–529 (1997)

    MATH  Article  MathSciNet  Google Scholar 

  3. 3

    Bleher, P., Mallison, R. Jr.: Zeros of sections of exponential sums. Int. Math. Res. Not., Art. ID 38937, 49, pp. (2006)

  4. 4

    Borodin, A., Olshanski, G.: Representation theory and random point processes. In: European Congress of Mathematics, Zürich: Eur. Math. Soc., 2005, pp. 73–94

  5. 5

    Carpenter, A.J., Varga, R.S., Waldvogel, J.: Asymptotics for the zeros of the partial sums of e z. I. In Proceedings of the U.S.-Western Europe Regional Conference on Padé Approximants and Related Topics (Boulder, CO, 1988), Vol. 21, 1991, pp. 99–120

  6. 6

    Chern S.-J., Vaaler J.D.: The distribution of values of Mahler’s measure. J. Reine Angew. Math. 540, 1–47 (2001)

    MATH  MathSciNet  Google Scholar 

  7. 7

    de Bruijn N.G.: On some multiple integrals involving determinants. J. Indian Math. Soc. (N.S.) 19, 133–151 (1956)

    Google Scholar 

  8. 8

    Edelman A.: The probability that a random real Gaussian matrix has k real eigenvalues, related distributions, and the circular law. J. Multivariate Anal. 60(2), 203–232 (1997)

    MATH  Article  MathSciNet  Google Scholar 

  9. 9

    Edelman A., Kostlan E., Shub M.: How many eigenvalues of a random matrix are real?. J. Amer. Math. Soc. 7(1), 247–267 (1994)

    MATH  Article  MathSciNet  Google Scholar 

  10. 10

    Everest G., Ward T.: Heights of Polynomials and Entropy in Algebraic Dynamics. Universitext. Springer-Verlag London Ltd., London (1999)

    Google Scholar 

  11. 11

    Forrester P.J., Honner G.: Exact statistical properties of the zeros of complex random polynomials. J. Phys. A 32, 2961–2981 (1999)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  12. 12

    Forrester P., Nagao T.: Skew orthogonal polynomials and the partly symmetric real Ginibre ensemble. J. Phys. A 41, 375003 (2008)

    Article  MathSciNet  Google Scholar 

  13. 13

    Forrester P.J., Nagao T.: Eigenvalue statistics of the real Ginibre ensemble. Phys. Rev. Lett. 99, 050603 (2007)

    Article  ADS  Google Scholar 

  14. 14

    Fyodorov Y.V., Sommers H.-J.: Random matrices close to Hermitian or unitary: overview of methods and results. J. Phys. A 36(12), 3303–3347 (2003)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  15. 15

    Ginibre J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6, 440–449 (1965)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  16. 16

    Girko V.L.: The circular law. Teor. Veroyatnost. i Primenen. 29(4), 669–679 (1984)

    MATH  MathSciNet  Google Scholar 

  17. 17

    Guhr T., Mueller-Groeling A., Weidenmueller H.A.: Random matrix theories in quantum physics: Common concepts. Phys. Rep. 299, 189 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  18. 18

    Kanzieper E., Akemann G.: Statistics of real eigenvalues in Ginibre’s ensemble of random real matrices. Phys. Rev. Lett. 95, 230201 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  19. 19

    Lehmann N., Sommers H.-J.: Eigenvalue statistics of random real matrices. Phys. Rev. Lett. 67, 941–944 (1991)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  20. 20

    Mehta, M.L.: Random Matrices. Third ed., Volume 142 of Pure and Applied Mathematics (Amsterdam). Amsterdam: Elsevier/Academic Press, 2004

  21. 21

    Rains, E.M.: Correlation functions for symmetrized increasing subsequences. http://arxiv.org/abs/math/0006097v1[math.Co], 2000

  22. 22

    Sinclair C.D.: Averages over Ginibre’s ensemble of random real matrices. Int. Math. Res. Not. 2007, 1–15 (2007)

    Google Scholar 

  23. 23

    Sinclair C.D.: The range of multiplicative functions on \({\mathbb{C}[x], \mathbb{R}[x]}\) and \({\mathbb{Z}[x]}\) . Proc. London Math. Soc. 96(3), 697–737 (2008)

    MATH  Article  MathSciNet  Google Scholar 

  24. 24

    Sommers H.-J.: Symplectic structure of the real Ginibre ensemble. J. Phys. A 40, F671–676 (2007)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  25. 25

    Sommers H.-J., Wieczorek W.: General eigenvalue correlations for the real Ginibre ensemble. J. Phys. A 41, 40 (2008)

    Article  Google Scholar 

  26. 26

    Stembridge J.R.: Nonintersecting paths, Pfaffians, and plane partitions. Adv. Math. 83(1), 96–131 (1990)

    MATH  Article  MathSciNet  Google Scholar 

  27. 27

    Tao T., Vu V.: Random matrices: The circular Law. Commun. Cont. Math. 10, 261–307 (2007)

    Article  MathSciNet  Google Scholar 

  28. 28

    Temme N.M.: Uniform asymptotic expansions of the incomplete gamma functions and the incomplete beta function. Math. Comp. 29(132), 1109–1114 (1975)

    MATH  Article  MathSciNet  Google Scholar 

  29. 29

    Tracy C.A., Widom H.: Correlation functions, cluster functions, and spacing distributions for random matrices. J. Stat. Phys. 92(5–6), 809–835 (1998)

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. D. Sinclair.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00220-016-2703-y.

Communicated by S. Zelditch

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Borodin, A., Sinclair, C.D. The Ginibre Ensemble of Real Random Matrices and its Scaling Limits. Commun. Math. Phys. 291, 177–224 (2009). https://doi.org/10.1007/s00220-009-0874-5

Download citation

Keywords

  • Correlation Function
  • Point Process
  • Random Matrix
  • Matrix Kernel
  • Scaling Limit