Abstract
We study a model of two interacting Hamiltonian particles subject to a common potential in contact with two Langevin heat reservoirs: one at finite and one at infinite temperature. This is a toy model for ‘extreme’ non-equilibrium statistical mechanics. We provide a full picture of the long-time behaviour of such a system, including the existence/non-existence of a non-equilibrium steady state, the precise tail behaviour of the energy in such a state, as well as the speed of convergence toward the steady state.
Despite its apparent simplicity, this model exhibits a surprisingly rich variety of long time behaviours, depending on the parameter regime: if the surrounding potential is ‘too stiff’, then no stationary state can exist. In the softer regimes, the tails of the energy in the stationary state can be either algebraic, fractional exponential, or exponential. Correspondingly, the speed of convergence to the stationary state can be either algebraic, stretched exponential, or exponential. Regarding both types of claims, we obtain matching upper and lower bounds.
Similar content being viewed by others
References
Bakry, D., Cattiaux, P., Guillin, A.: Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal. 254(3), 727–759 (2008)
Bony, J.-M.: Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier (Grenoble) 19 , no. fasc. 1, 277–304 xii (1969)
Carmona P.: Existence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat baths. Stoch. Process. Appl. 117(8), 1076–1092 (2007)
Cattiaux, P., Gozlan, N., Guillin, A., Roberto, C.: Functional inequalities for heavy tails distributions and application to isoperimetry. http://arxiv.org/abs/0807.3112v1[math.PR], 2008
Cattiaux, P., Guillin, A., Wang, F.-Y., Wu, L.: Lyapunov conditions for logarithmic Sobolev and super Poincaré inequality, http://arxiv.org/abs/0712.0235[math.PR], 2007
Douc, R., Fort, G., Guillin, A.: Subgeometric rates of convergence of f-ergodic strong Markov processes, http://arxiv.org/abs/math/0605791v1[math.ST], 2006
DeVille, R.E.L., Milewski, P.A., Pignol, R.J., Tabak, E.G., Vanden-Eijnden, E.: Nonequilibrium statistics of a reduced model for energy transfer in waves. Comm. Pure Appl. Math. 60(3), 439–461 (2007)
Da Prato, G., Zabczyk, J.: Ergodicity for Infinite-Dimensional Systems, Vol. 229 of London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press, 1996
Desvillettes, L., Villani, C.: On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation. Comm. Pure Appl. Math. 54(1), 1–42 (2001)
Eckmann J.-P., Hairer M.: Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators. Commun. Math. Phys. 212(1), 105–164 (2000)
Eckmann J.-P., Hairer M.: Spectral properties of hypoelliptic operators. Commun. Math. Phys. 235(2), 233–253 (2003)
Eckmann J.-P., Pillet C.-A., Rey-Bellet L.: Entropy production in nonlinear, thermally driven Hamiltonian systems. J. Statist. Phys. 95(1-2), 305–331 (1999)
Eckmann J.-P., Pillet C.-A., Rey-Bellet L.: Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures. Commun. Math. Phys. 201(3), 657–697 (1999)
Fort G., Roberts G.O.: Subgeometric ergodicity of strong Markov processes. Ann. Appl. Probab. 15(2), 1565–1589 (2005)
Hairer, M.: A probabilistic argument for the controllability of conservative systems. http://arxiv.org/abs/math-ph/0506064v2, 2005
Hairer, M., Mattingly, J.: Slow energy dissipation in anharmonic oscillator chains. http://arxiv.org/abs/0712.3889v2[math-ph], 2009
Hairer, M., Mattingly J.: Yet another look at Harris’ ergodic theorem for Markov chains. http://arxiv.org/abs/0810.2777v1[math.PR], 2008
Hérau F., Nier F.: Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential. Arch. Rat. Mech. Anal. 171(2), 151–218 (2004)
Helffer, B., Nier, F.: Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians, Vol. 1862 of Lecture Notes in Mathematics. Berlin: Springer-Verlag, 2005
Hörmander L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)
Hörmander, L.: The Analysis of Linear Partial Differential Operators. III, Vol. 274 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin: Springer-Verlag, 1985
MacKay R.S., Aubry S.: Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators. Nonlinearity 7(6), 1623–1643 (1994)
Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Communications and Control Engineering Series. London: Springer-Verlag London Ltd., 1993
Milewski P.A., Tabak E.G., Vanden-Eijnden E.: Resonant wave interaction with random forcing and dissipation. Stud. Appl. Math. 108(1), 123–144 (2002)
Rey-Bellet L., Thomas L.E.: Asymptotic behavior of thermal nonequilibrium steady states for a driven chain of anharmonic oscillators. Commun. Math. Phys. 215(1), 1–24 (2000)
Rey-Bellet L., Thomas L.E.: Exponential convergence to non-equilibrium stationary states in classical statistical mechanics. Commun. Math. Phys. 225(2), 305–329 (2002)
Röckner M., Wang F.-Y.: Weak Poincaré inequalities and L 2-convergence rates of Markov semigroups. J. Funct. Anal. 185(2), 564–603 (2001)
Veretennikov A.Y.: On polynomial mixing estimates for stochastic differential equations with a gradient drift. Teor. Veroyatnost. i Primenen. 45(1), 163–166 (2000)
Veretennikov, A.Y.: On lower bounds for mixing coefficients of Markov diffusions. In: From Stochastic Calculus to Mathematical Finance. Berlin: Springer, 2006, pp. 623–633
Villani C.: Hypocoercive diffusion operators. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 10(2), 257–275 (2007)
Villani, C.: Hypocoercivity, 2008 To appear in Memoirs Amer. Math. Soc.
Veretennikov A.Y., Klokov S.A.: On the subexponential rate of mixing for Markov processes. Teor. Veroyatn. Primen. 49(1), 21–35 (2004)
Wonham W.M.: Liapunov criteria for weak stochastic stability. J. Diff. Eqs. 2, 195–207 (1966)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by A. Kupiainen
Rights and permissions
About this article
Cite this article
Hairer, M. How Hot Can a Heat Bath Get?. Commun. Math. Phys. 292, 131–177 (2009). https://doi.org/10.1007/s00220-009-0857-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-009-0857-6