Communications in Mathematical Physics

, Volume 291, Issue 2, pp 357–401 | Cite as

AQFT from n-Functorial QFT

Article

Abstract

There are essentially two different approaches to the axiomatization of quantum field theory (QFT): algebraic QFT, going back to Haag and Kastler, and functorial QFT, going back to Atiyah and Segal. More recently, based on ideas by Baez and Dolan, the latter is being refined to “extended” functorial QFT by Freed, Hopkins, Lurie and others. The first approach uses local nets of operator algebras which assign to each patch an algebra “of observables”, the latter uses n-functors which assign to each patch a “propagator of states”.

In this note we present an observation about how these two axiom systems are naturally related: we demonstrate under mild assumptions that every 2-dimensional extended Minkowskian QFT 2-functor (“parallel surface transport”) naturally yields a local net, whose locality derives from the 2-categorical exchange law, and which is covariant if the 2-functor is equivariant. This is obtained by postcomposing the propagation 2-functor with an operation that mimics the passage from the Schrödinger picture to the Heisenberg picture in quantum mechanics. The argument has a straightforward generalization to general Lorentzian structure, bare lightcone structure and higher dimensions. It does not, however, by itself imply anything about the existence of a vacuum state or about positive energy representations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of the 19th IEEE conference on Logic in Computer Science (LiCS’04). IEEE Computer Science Press, 2004, pp. 415–425[arXiv:quant-ph/0402130]Google Scholar
  2. 2.
    Atiyah M.: Topological quantum field theory. Publ. Math. de l’IHÉS 68, 175–186 (1988)MATHMathSciNetGoogle Scholar
  3. 3.
    Baas, N., Bökstedt, M., Kro, T.: Two-categorical bundles and their classifying spaces. http://arxiv.org/abs/math/0612549v2[math.AT], 2008
  4. 4.
    Baez, J.: Quantum quandaries: a category-theoretic perspective. In: Structural Foundations of Quantum Gravity, eds. S. French, D. Rickles, J. Saatsi, Oxford: Oxford U. Press, 2006, pp. 240–265Google Scholar
  5. 5.
    Baez J., Crans A.: Lie 2-algebras. Theor. Appl. of Categories 12, 492–528 (2004)MATHMathSciNetGoogle Scholar
  6. 6.
    Baez J., Crans A., Schreiber U., Stevenson D.: From loop groups to 2-groups. Homology, Homotopy Appl. 9(2), 101–135 (2007)MATHMathSciNetGoogle Scholar
  7. 7.
    Baez J., Dolan J.: Higher dimensional algebra and topological quantum field theory. J. Math. Phys. 36, 6073–6105 (1995)MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Baez, J., Schreiber, U.: Higher gauge theory. In: Contemporary Mathematics 431, Categories in Algebra, Geometry and Mathematical Physics, Providence, RI: Amer. Math. Soc., 2007, pp. 7–30Google Scholar
  9. 9.
    Bartels, T.: 2-Bundles. PhD Thesis, UC Riverside, 2006, available at http://math.ver.edu/home/baez/thesis_toby.pdf
  10. 10.
    Bartlett, B.: Categorical aspects of topological quantum Field theories. M.Sc Thesis, Utrecht University, 2005, http://arxiv.org/abs/math/0512103v1[math.QA], 2005
  11. 11.
    Bartlett, B.: On unitary 2-representations of finite groups and TQFT. PdD Thesis, University of Sheffield, 2008Google Scholar
  12. 12.
    Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle – A new paradigm for local quantum physics. Commun. Math. Phys. 237, 31–68 (2003)MATHADSMathSciNetGoogle Scholar
  13. 13.
    Buchholz D., Haag R.: The quest for understanding in relativistic quantum physics. J. Math. Phys. 41, 3674–3697 (2000)MATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Cheng E., Gurski N.: Towards an n-category of cobordisms. Theory and Applications of Categories 18(10), 274–302 (2007)MATHMathSciNetGoogle Scholar
  15. 15.
    Coecke, B.: Kindergarten quantum mechanics. Talk at Quantum Information, Computation and Logic (Perimeter Institute, 2005), available at http://www.quxat.org/quoxic.talks/bobkinder.pdf
  16. 16.
    Elgueta J.: Representation theory of 2-groups on Kapranov and Voevodsky’s 2-vector spaces. Adv. in Math. 213(1), 53–92 (2007)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Evans D.E., Kawahigashi Y.: Quantum symmetries on operator algebras. Oxford University Press, Oxford (1998)MATHGoogle Scholar
  18. 18.
    Fjelstad J., Fuchs J., Runkel I., Schweigert C.: Uniqueness of open/closed rational CFT with given algebra of open states. Adv. Theor. Math. Phys. 12(6), 1283–1375 (2008)MATHMathSciNetGoogle Scholar
  19. 19.
    Fjelstad, J., Schreiber, U.: Rational CFT is parallel transport, in preparation [http://www.math.uni-hamburg.de/home/schreiber/cc.pdf], 2008
  20. 20.
    Fredenhagen K., Rehren K., Seiler E.: Quantum field theory: Where we are. Lecture Notes in Physics 721, 61–87 (2007)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Freed D.S.: Higher algebraic structures and quantization. Commun. Math. Phys. 159, 343–398 (1994)MATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Freed, D.S.: Quantum groups from path integrals. Proceedings of Particles and Fields (Banff, 1994), 63Ð107, CRM Ser. Math. Phys., New York: Springer, 1999, available at http://arxiv.org/abs/q-alg/9501025v1, 1995
  23. 23.
    Freed D.S.: Remarks on Chern-Simons Theory. Bull. Amer. Math. Soc. (NS) 46(2), 221–254 (2009) [arXiv:0808.2507]MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Ganter N., Kapranov M.: Representation and character theory in 2-categories. Adv. in Math. 213(1), 53–92 (2007)CrossRefGoogle Scholar
  25. 25.
    Haag R.: Local Quantum Physics: Fields, Particles, Algebras. Springer, Berlin (1992)MATHGoogle Scholar
  26. 26.
    Halvorson H., Mueger M.: Algebraic quantum field theory. In: Butterfield, J., Earman, J. (eds) Handbook of the Philosophy of Physics, pp. 731–922. North-Holland, Amsterdam (2007)CrossRefGoogle Scholar
  27. 27.
    Lurie, J.: On the classication of topological field theories, [http://www-math.mit.edu/~lurie/papers/cobordism.pdf], 2009
  28. 28.
    Huang Y.-Z.: Geometric interpretation of vertex operator algebras. Proc. Natl. Acad. Sci. USA 88, 9964–9968 (1991)MATHCrossRefADSGoogle Scholar
  29. 29.
    Kapranov, M., Voevodsky, V.: 2-categories and Zamolodchikov tetrahedra equations. In: Algebraic Groups and Theor Generalization Quantum and Infinite-Dimension Methods, Proc. Symp. Pure Math. 56, Part 2, Providence, RI: Amer. Math. Soc., 1994, pp. 177–259Google Scholar
  30. 30.
    Kawahigashi, Y.: Classification of operator algebraic conformal field theories in dimensions one and two. In: Proceedings of XIV International Congress on Mathematical Physics at Lisbon (2003) [arXiv:math-ph/0308029]Google Scholar
  31. 31.
    Kawahigashi, Y.: Conformal Field Theory and Operator Algebras. In: Proceedings of ICMP, Rio de Janeiro (2006), available at http://arxiv.org/abs/0704.0097v1[math-ph], 2007
  32. 32.
    Kawahigashi, Y., Longo, R.: Classification of two-dimensional local conformal nets with c < 1 and 2-cohomology vanishing for tensor categories. 244, Number 1, 63–97 (2004)Google Scholar
  33. 33.
    Kelly, G.M.: Basic concepts of enriched category theory. Cambridge University Press, Lecture Notes in Mathematics 64, 1982; Republished in: Reprints in Theory and Applications of Categories, No. 10 (2005) pp. 1–136, available at http://www.tac.mta.ca/tac/reprints/articles/10/+10.pdf
  34. 34.
    Kawahigashi Y., Longo R.: Local conformal nets arising from framed vertex operator algebras. Adv. in Math. 206(2), 729–751 (2006)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Kong L.: Open-closed field algebras. Commun. Math. Phys. 280, 207–261 (2008)MATHCrossRefADSGoogle Scholar
  36. 36.
    Lauda A.: Frobenius algebras and ambidextrous adjunctions. Theory and Applications of Categories 16(4), 84–122 (2006)MATHMathSciNetGoogle Scholar
  37. 37.
    Lechner, G.: On the construction of quantum field theories with factorizing S-Matrices. PhD thesis, Göttingen, 2006Google Scholar
  38. 38.
    Leinster, T.: Basic bicategories. http://arxiv.org/abs/math/9810017v2[math.CT], 1998
  39. 39.
    Longo R., Rehren K.-H.: Nets of subfactors. Rev. Math. Phys. 7, 567–597 (1995)MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Longo R., Rehren K.-H.: Local fields in boundary conformal QFT. Rev. Math. Phys. 16, 909 (2004)MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Müger M.: From subfactors to categories and topology I. Frobenius algebras in and Morita equivalence of tensor categories. J, Pure Appl. Alg. 180, 81–157 (2003)MATHCrossRefGoogle Scholar
  42. 42.
    Nill F., Szlachány K.: Quantum chains of Hopf algebras with order-disorder fields and quantum double symmetry. Commun. Math. Phys. 187(1), 159–200 (1997)MATHCrossRefADSGoogle Scholar
  43. 43.
    Ocneanu, A.: Quantized group, string algebras and Galois theory for algebras. In: Operator Algebras and Applications, Vol. 2, eds. Evans, D.E., Takesaki, M. Cambridge: Cambridge University Press, 1988, 119Google Scholar
  44. 44.
  45. 45.
    Roberts J., Longo R.: A theory of dimension. K-Theory 11(2), 103–159 (1997)MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Runkel I., Fjelstad J., Fuchs J., Schweigert C.: Topological and conformal field theory as Frobenius algebras. Contemp. Math. 431, 225–248 (2007)MathSciNetGoogle Scholar
  47. 47.
    Sati, H., Schreiber, U., Škoda, Z., Stevenson, D.: Twisted nonabelian differential cohomology. In preparation, [http://www.math.uni-hamburg.de/home/schreiber/nactwist.pdf], 2008
  48. 48.
    Schreiber, U.: The canonical 2-representation. [http://www.math.uni-hamburg.de/home/schreiber/canrep.pdf], 2008
  49. 49.
    Schreiber, U., Waldorf, K.: Parallel transport and functors. To appear in Journal of Homotopy and Related Structures available at http://arxiv.org/abs/0705.0452v2[math.D6], 2008
  50. 50.
    Schreiber, U., Waldorf, K.: Smooth functors vs. differential forms. http://arxiv.org/abs0802.0663v2[math.DG], 2008
  51. 51.
    Schreiber, U., Waldorf, K.: Connections on non-abelian Gerbes and their Holonomy. http://arxiv.org/abs/0808.1923v1[math.DG], 2008
  52. 52.
    Schroer B.: Modular Wedge Localization and the d = 1 + 1 Formfactor Program. Annals Phys. 275, 190–223 (1999)MATHCrossRefADSMathSciNetGoogle Scholar
  53. 53.
    Segal, G.: The definition of conformal field theory. In: Topology, geometry and quantum field theory, London Math. Soc. LNS 308, edited by U. Tillmann, Cambridge: Cambridge Univ. Press 2004, pp. 247–343Google Scholar
  54. 54.
    Shulman M.: Framed bicategories and monoidal fibrations. Theory and Applications of Categories 20(18), 650–738 (2008)Google Scholar
  55. 55.
    Stolz, S., Teichner, P.: What is an elliptic object? In: Topology, geometry and quantum field theory, London Math. Soc. LNS 308, Cambridge: Cambridge Univ. Press, 2004, pp. 247–343Google Scholar
  56. 56.
    Street R.: Categorical and combinatorial aspects of descent theory. Applied Categorical Structures 12(5-6), 537–576 (2004)MATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Verity, D.: Cobordisms and weak complicial sets. Talk given at Macquarie Univ., Australian Category Theory Seminar, February 13, 2008Google Scholar
  58. 58.
    Walker, K.: TQFTs, [http://canyon23.net/math/tc.pdf]
  59. 59.
    Wockel, C.: A global perspective to gerbes and their gauge stacks. http://arxiv.org/abs/0803.3692v3[math.DG], 2008
  60. 60.
    Zito, P.: 2-C*-categories with non-simple units. PhD thesis, available at http://arxiv.org/abs/math/0509266v1, 2005

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Zentrum für Mathematische Physik, Bundesstrasse 55Universität HamburgHamburgGermany

Personalised recommendations